{ "cells": [ { "cell_type": "markdown", "metadata": {}, "source": [ "# Intro to Graphics\n", "\n", "This notebook gives an overview on basic plots, charts, and graphs in Python. It requires knowledge of `pandas` `DataFrame`s covered in \"Intro to Pandas and Table Visualization.ipynb\"." ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Required Imports\n", "\n", "We will need to import `pandas` as usual. But here since we will need to do plotting, there is a specific command we need to run at the beginning of the notebook: `%matplotlib inline`. This basically allows the graphics to be displayed in the notebook. The `matplotlib` part comes because `pandas` uses `matplotlib` under the hood to generate its plots." ] }, { "cell_type": "code", "execution_count": 4, "metadata": {}, "outputs": [], "source": [ "import pandas as pd\n", "%matplotlib inline" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Plotting with Pandas" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Let's quickly set up a `DataFrame` with some data so we can create some plots from it. " ] }, { "cell_type": "code", "execution_count": 5, "metadata": {}, "outputs": [ { "data": { "text/html": [ "
\n", "\n", "\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "
Valuest
0100.121
1110.502
2105.203
3106.704
4110.205
598.506
694.207
791.108
893.129
994.0210
1092.1711
\n", "
" ], "text/plain": [ " Values t\n", "0 100.12 1\n", "1 110.50 2\n", "2 105.20 3\n", "3 106.70 4\n", "4 110.20 5\n", "5 98.50 6\n", "6 94.20 7\n", "7 91.10 8\n", "8 93.12 9\n", "9 94.02 10\n", "10 92.17 11" ] }, "execution_count": 5, "metadata": {}, "output_type": "execute_result" } ], "source": [ "df = pd.DataFrame()\n", "df['Values'] = [100.12, 110.5, 105.2, 106.7, 110.2, 98.5, 94.2, 91.1, 93.12, 94.02, 92.17]\n", "df['t'] = [i + 1 for i in range(11)]\n", "df" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "We can immediately call `.plot` on the `DataFrame` and it will try to give us a reasonable plot." ] }, { "cell_type": "code", "execution_count": 6, "metadata": {}, "outputs": [ { "data": { "text/plain": [ "" ] }, "execution_count": 6, "metadata": {}, "output_type": "execute_result" }, { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAX0AAAD4CAYAAAAAczaOAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4xLjEsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy8QZhcZAAAfq0lEQVR4nO3dd3hc9Z3v8fdXGmnG0kiyuuWC5SJ3wIAgpoQYjAMsAfuyQPCSxEm4y+be0NOA8FyeLCnOwhLCZgPXAQK7CTFZAosDhoSAjUMuEGRK3HDBBQvLktzUbI3a7/4xI1lWscqMNGOfz+t5/IzmN+fM+eqAPud3fqeZcw4REfGGpHgXICIiw0ehLyLiIQp9EREPUeiLiHiIQl9ExEN88S4AIC8vzxUXF8e7DBGR48qaNWv2OufyBzJPQoR+cXExZWVl8S5DROS4YmY7BzqPhndERDxEoS8i4iEKfRERD0mIMX0RkXbNzc2Ul5fT2NgY71ISRiAQYOzYsaSkpET9XQp9EUko5eXlZGRkUFxcjJnFu5y4c86xb98+ysvLmTBhQtTfp+EdEUkojY2N5ObmKvAjzIzc3NyY7fko9EUk4SjwjxbL9aHQB/bWh/jlX7bz5y3VhFpa412OiMiQ8fSYfmNzK4+9sZ2HV31EfagFgLTUZM6ZlMtnphYwd0o+43LS4lzlic85x679h1m/u4YNFbVs2F3LxopaxuWk8b0FM5k2KjPeJYqHzJ07lzvvvJOLL764o+3BBx9k8+bN/PznP+9xnmAwSH19/XCVGBVPhn5bm+P3f9vNv7y8iU8OHuai6YXcNr+EytpGVm2qZuWmKv60sQqASfnpzJ1awNyp+Zw1IQe/LznO1R/fmlra2FxZ1xHu7QFfF9noJhlMLghyRnEOf9m6l8899Ab/9JmJ3HRhCYEUrXsZeosWLWLZsmVHhf6yZcu477774lhV7Hgu9Mt27OfeFzfywa6DzBydyX1Xn8I5k/IAmDk6iwunFeKcY9veBlZtqmbVpir+862dPPbGdu0FDFDN4WY2RsJ9/e5aNlTUsrWqjubW8NPaRqQkM70ogwWnjWbm6CxmFGUydVRGR7jvb2jihys28u8rP+LFv1Xwg/9xMudOzovnryQecNVVV3H33XcTCoXw+/3s2LGD3bt3M3v2bObNm8eBAwdobm7m+9//PgsWLDhq3lWrVnH//ffzwgsvAHDjjTdSWlrKl7/8ZdasWcPtt99OfX09eXl5PPHEExQVFfHQQw/xyCOP4PP5mDFjBsuWLRvS388zob9zXwNLXvqQl9btYVRmgPuvPpUrTxtDUlL3AyRmxqT8IJPyg1x/3gQONbXw1rZ9rPywmlWbj94LuGBqAXOnFnDmhGzP7gU456ioaQwH++5aNlSEh2l27T/cMU1e0M/M0ZnMnZrPjKJMZozOpDg3neQe1n+7nPTUjv9Odz23lusefZsrTx/D3ZfNICc9dTh+NYmz7/1+PRt218b0O2eMzuSey2f2+nlubi5nnXUWL7/8MgsWLGDZsmV8/vOfZ8SIETz33HNkZmayd+9e5syZwxVXXNGvg6zNzc3cdNNNPP/88+Tn5/P000/z3e9+l8cff5wlS5awfft2/H4/Bw8ejOWv2qMTPvRrDjXzb69t4ck3d5CSnMTt86fwj5+eyIjU/gd0WqqPC6cV9rgX8B9v7eRRD+0FtLS28VF1QzjYO/XgDx5qBsAMJuSmc8rYkVx75knMHB0O+IKMwKCXec7kPF6+9Xx+9tpWHnn9I1Z+WMXdl83gytPH6CwPGRLtQzztof/444/jnOOuu+5i9erVJCUl8cknn1BZWcmoUaP6/L5Nmzaxbt065s+fD0BraytFRUUAnHLKKVx33XUsXLiQhQsXDunvBSdw6De1tPGrt3by0GtbqDnczDVnjOMbn51CQebgwwe8tRfQEGrhwz1HD898uKeOppY2AFJ9SUwblcGls0Z19N6njcok3R/7/60CKcl88+KpXH7qaO589m98478+4Nn3yvnBwpMpzkuP+fIkMRyrRz6UFi5cyO233867777L4cOHOf3003niiSeorq5mzZo1pKSkUFxc3O3ceZ/PR1tbW8f79s+dc8ycOZM333yz27JefPFFVq9ezfLly7n33ntZv349Pt/QRfMJF/rOOf64oZIfrdjIjn2HOG9yHnf93XRmjB6aM0COx72A1jbHgUNNHGhoYl9DE/u7/Kuqa+TDijq272vAhYffGZmWwszRmSw+ezwzRmcyc3QWE/PS8SUP71m/U0dl8MzXzuGpv37Mj1/6kIsfXM3N80r4x09PJNWnM5AlNoLBIHPnzuWrX/0qixYtAqCmpoaCggJSUlJYuXIlO3d2v6vx+PHj2bBhA6FQiMbGRl599VXOO+88pk6dSnV1NW+++SZnn302zc3NbN68menTp7Nr1y4uuOACzjvvPJ566inq6+sZOXLkkP1uJ1Tory2v4d4XN/DX7fuZXBDkl18+k7lT84dtCKC/ewGTC4LMnZIfs72AxubWbsEdDvMQ+xuaI6/htgMNTRw83NwR5l1lBHzkBf1MKQyy8LQxHT34oqxAwgylJCUZX5gznvkzCvne79dz3x82sfz93fzwypM5Y3x2vMuTE8SiRYu48sorOw6sXnfddVx++eWUlpYye/Zspk2b1m2ecePGcc0113DKKadQUlLCaaedBkBqairPPPMMN998MzU1NbS0tHDrrbcyZcoUvvCFL1BTU4Nzjttuu21IAx/AXG9//cOotLTURfMQld0HD3P/Hzbx7HufkJueym3zp3DtmeOGvRd6LF33At7evp+mlrZuewFjs0dQ29jSpRd+JLzbg3t/p88PNfV8QVlykpGdlkpOego56ankpvvJTk8hJ91Pbnoq2emp5KanRj5LZWRa6nHZW/7Thkr+z/PrqKht5LpPncS3L5lGZiD6G1NJfGzcuJHp06fHu4yE09N6MbM1zrnSgXzPcd3Trw+18Miqj/jFn7fhgP81dxL/e+4kMhLwD76/ewG+JKOlrecNcSAlidx0PzmRoJ6YH+z4OadTeLeHeWYgpcezk040F80oZM6kXP71j5t48v/t4I/rK/nnBTO5eOaohNk7EUkUx2Xot7S28duych54ZTN760Nccepovn3JVMZmHz9nzPR2LGBvfaij9310mPsHdMaR1wT9Pu65fCYLZ4/hjmfX8rVfvctF0wv55wUzGT1yRLzLE0kYx13ov765mh++uJFNlXWUjs/mF186g9NOOr7HcTvvBUh0Th03kt/feC6P/2U7D7yymfkPvM43L57Kl84uPuY1ASJecdyE/ubKOn7w4kZe31zNSTlpPHzd6VwyS7vv0p0vOYkbzp/EpbOKuPu/1/G932/gv9/7hB9decqQncUlcrxI+NCvrgvxwCubefqdjwn6fdx92XS+ePb44/K8dxle43LSeOIrZ7L8g93c+8IGLv/ZG/zP8yZw60VTNFQmnpWwod9+B8yfr9xKqKWNxecUc/OFJWTr8nsZADNjwewxfGZKPj9a8SH/d/U2Vqyr4PsLT+YzU/LjXZ7IsEu48/Pa2hzPvVfOhfev4r4/bOLcyXn88bbzuefymQp8GbSRaan8+KpTePqGOaQkJ7H48b9yy7L32FsfindpkmAOHjzY6y2UTwR9hr6ZPW5mVWa2rlNbjpm9YmZbIq/ZkXYzs4fMbKuZ/c3MTh9IMW9v28fCn/+F257+gJxgKstumMPSL5UyUQc4JUY+NTGXl275NLfMK2HF2grm/evrPP3OxyTC9SqSGDwf+sATwCVd2u4AXnXOlQCvRt4DXAqURP7dADzcnyJCLW3803+W8fmlb4XH8K85leVfP485E3P7M7vIgPh9ydw2fwov3fJpphZm8J3freXapW/xUfXx8RAMGVp33HEHH330EbNnz+Zb3/pWvMuJuT7H9J1zq82suEvzAmBu5OcngVXAdyLt/+HC3aa3zGykmRU55yqOtYwtlXW0btnLNz87hevPG9gdMEUGa3JBBstumMPTZbv40YqNXPrgn/n6BZP52tyJOlEgUbx0B+xZG9vvHHUyXLqk14+XLFnCunXreP/992O73AQx2DH9wvYgj7wWRNrHALs6TVceaevGzG4wszIzKwsktbHqW3O58cISBb4Mq6QkY9FZJ/Gnb3yGz84s5Cd/2sxlD73BOzv2x7s0kSER67N3ejppvsfBUufcUmAphO+9E8391kWiVZAR4Gf/cDp/f0YVdz+3jqsfeZNFZ53EHZdMIyst8W7r4RnH6JHL4Aw29Cvbh23MrAioirSXA+M6TTcW2B1NgSLD6YKpBbxy+/n85JXNPPbGdv6wfg9zp+ZTOj6H0uJsJucHPXE/Iy/LyMigrq4u3mUMmcGG/nJgMbAk8vp8p/YbzWwZ8Cmgpq/xfJFEk5bq47uXzWDB7DH87LWtvL6pmmff/QSArBEpnDE+m9LibErH53DK2Cw9sP0Ek5uby7nnnsusWbO49NJLT5gHorfrM/TN7DeED9rmmVk5cA/hsP+tmV0PfAxcHZl8BfB3wFbgEPCVIahZZFjMGpPFI188A+ccO/Yd4p0d+1mz4wBlO/fz2ofhnduUZOPkMVmUFueENwbjs8kN+uNcuUTrqaeeincJQ6Y/Z+8s6uWjeT1M64CvR1uUSCIxMybkpTMhL51rSsOjl/sbmliz8wBlO/ZTtvMAT/xlB0tXbwNgYl46Z4zP5sziHM4ozmZiXrruESUJI2FvwyCSyHLSU5k/o5D5MwqB8G1D1n5SQ9mOA6zZuZ9XNlbyX2vKO6Zt3wsoLc5h1phMnRIqcaPQF4mBQEoyZxbncGZxDjCJtjbHtr31lO04wDvtG4INlUD4gfKzx47kjOLwhuCM8dmMTNMtRjpzzmnvqJNYXjGu0BcZAklJxuSCDCYXZHDtWScB4TvGrtm5P7wh2HmAX6zexsORp6SVFAQ7Dg6XFmdzUk6aZ0MvEAiwb98+cnNzPbsOOnPOsW/fPgKB2JzWfkI8I1fkeHS4qZUPyg92HBdYs/MAdY0tAOQF/ZxZnB05UyiHGUWZx+XziwejubmZ8vJyGhsb411KwggEAowdO5aUlKOvGRnMM3IV+iIJoq3NsbmqjrIdRw4Qlx84DISfnVycl86UwiAlBRmUFAaZUphBcW66ZzYGseScI9TSRn2ohUOhVhqaWmgItdDQ1Bp+DR15f6iphYZQpD3yc3NrG7lBPwUZfgoz/RRkBCiIvBZm+gn6fcOyl6LQFznB7KlppGznfjbsrmVLVT1bKuvYuf8Q7X+2vqTwmUVTCjOYXBDeEEwpDFKcl05K8om1MWhrc+xtCFFzqPmocD7U1BoO76YW6kOtHOoU3uG2TtNEAv5QUyutbf3LvuQkIz01maDfR5rfR3pqMr7kJPbVh6isDXG4ubXbPGmpyRRk+CnIDEQ2DEe/FmTGZuOg0BfxgMbmVrZW1bO1qp7NlXVsrqxnS1UdH/eyMWjfK5hSGGR8bmJuDFpa26iqC1FR08iemkYqag5TWdvY6X0jVXWNNLf2nVdpqcmkR8I5/Oojzd+9Ld3vI92fTFqqj2Dktb2t/fO01GT8vqReg9k5R12oharaEFW1jVTVhajs8lpV29jrxmFESnKPewqdNw4FmX4yetk4DCb0dSBX5DgTSElm1pgsZo3JOqq9fWOwpSqyIaisY93uGlasq+jYGKQkhzcGJYUZTOkYJhrajUGopZXKmhAVNYfZ0ynI99Q0UlHbyJ6aw1TXheja8Q6kJFGUNYJRmQE+NSGHwqwAozID5KSnHhXM7WGe5veRlpI8rLfJMDMyAylkBlKYXND7cz+cc9SHWqisDVFV1xjeSNQ1Rt6HNxDrd9fyWm0Vh5p63jgUZPopzAiQH3ktzBzcRYAKfZETRG8bg8NNrXxUHd4raB8iWltew4q1R28MJuYFKYkcM5hSGKSkMIPi3DR8x9gYNIRa2FN7pDe+p+YwFTWNR/XS9zU0dZsvw+9jVFaAUVkBphbmMyozwKisERRF2oqyAmSNSDlhzt4xMzICKWT0sXEAIhuH8Dqsbt9jqA1RGdlr2LC7lpW9bBz6VYuGd0S86XBT9z2DzVV17Np/uGOazhuDcTlp7K9voqK2kcrIEExt5GyjzrLTUo4K8HCgh4O8KCtAYWaAjIDuXBqt+lALGYEUDe+ISP+MSE3m5LFZnDz26D2DQ00tfFTVED5eUFXH1sp6Pig/yIq1FeQG/RRlBRifm8aciTmMyhrBqCw/ozKPhLxuQDc8gv7BxbdCX0SOkpbq63FjoKtkTwyJdxhfRBKSAv/EoNAXEfEQhb6IiIco9EVEPEShLyLiIQp9EREPUeiLiHiIQl9ExEMU+iIiHqLQFxHxEIW+iIiHKPRFRDxEoS8i4iEKfRERD1Hoi4h4SFShb2a3mdl6M1tnZr8xs4CZTTCzt81si5k9bWapsSpWRESiM+jQN7MxwM1AqXNuFpAMXAv8GPiJc64EOABcH4tCRUQketEO7/iAEWbmA9KACuBC4JnI508CC6NchoiIxMigQ9859wlwP/Ax4bCvAdYAB51z7U9LLgfG9DS/md1gZmVmVlZdXT3YMkREZACiGd7JBhYAE4DRQDpwaQ+Tup7md84tdc6VOudK8/PzB1uGiIgMQDTDOxcB251z1c65ZuBZ4BxgZGS4B2AssDvKGkVEJEaiCf2PgTlmlmbhJybPAzYAK4GrItMsBp6PrkQREYmVaMb03yZ8wPZdYG3ku5YC3wFuN7OtQC7wWAzqFBGRGPD1PUnvnHP3APd0ad4GnBXN94qIyNDQFbkiIh6i0BcR8RCFvoiIhyj0RUQ8RKEvIuIhCn0REQ9R6IuIeIhCX0TEQxT6IiIeotAXEfEQhb6IiIco9EVEPEShLyLiIQp9EREPUeiLiHiIQl9ExEMU+iIiHqLQFxHxEIW+iIiHKPRFRDxEoS8i4iEKfRERD1Hoi4h4iEJfRMRDFPoiIh6i0BcR8RCFvoiIh0QV+mY20syeMbMPzWyjmZ1tZjlm9oqZbYm8ZseqWBERiU60Pf2fAi8756YBpwIbgTuAV51zJcCrkfciIpIABh36ZpYJnA88BuCca3LOHQQWAE9GJnsSWBhtkSIiEhvR9PQnAtXAL83sPTN71MzSgULnXAVA5LWgp5nN7AYzKzOzsurq6ijKEBGR/oom9H3A6cDDzrnTgAYGMJTjnFvqnCt1zpXm5+dHUYaIiPRXNKFfDpQ7596OvH+G8Eag0syKACKvVdGVKCIisTLo0HfO7QF2mdnUSNM8YAOwHFgcaVsMPB9VhSIiEjO+KOe/Cfi1maUC24CvEN6Q/NbMrgc+Bq6OchkiIhIjUYW+c+59oLSHj+ZF870iIjI0dEWuiIiHKPRFRDxEoS8i4iEKfRERD1Hoi4h4iEJfRMRDFPoiIh6i0BcR8RCFvoiIhyj0RUQ8RKEvIuIhCn0REQ9R6IuIeIhCX0TEQxT6IiIeotAXEfEQhb6IiIco9EVEPEShLyLiIQp9EREPUeiLiHiIQl9ExEMU+iIiHqLQFxHxEIW+iIiHKPRFRDxEoS8i4iFRh76ZJZvZe2b2QuT9BDN728y2mNnTZpYafZkiIhILsejp3wJs7PT+x8BPnHMlwAHg+hgsQ0REYiCq0DezscBlwKOR9wZcCDwTmeRJYGE0yxARkdiJtqf/IPBtoC3yPhc46JxribwvB8ZEuQwREYmRQYe+mX0OqHLOrenc3MOkrpf5bzCzMjMrq66uHmwZIiIyANH09M8FrjCzHcAywsM6DwIjzcwXmWYssLunmZ1zS51zpc650vz8/CjKEBGR/hp06Dvn7nTOjXXOFQPXAq85564DVgJXRSZbDDwfdZUiIhITQ3Ge/neA281sK+Ex/seGYBkiIjIIvr4n6ZtzbhWwKvLzNuCsWHyviIjElq7IFRHxEIW+iIiHKPRFRDxEoS8i4iEKfRERD1Hoi4h4iEJfRMRDFPoiIh6i0BcR8RCFvoiIhyj0RUQ8RKEvIuIhCn0REQ9R6IuIeIhCX0TEQxT6IiIeotAXEfEQhb6IiIco9EVEPEShLyLiIQp9EREPUeiLiHiIQl9ExEMU+iIiHqLQFxHxEIW+iIiHKPRFRDxk0KFvZuPMbKWZbTSz9WZ2S6Q9x8xeMbMtkdfs2JUrIiLRiKan3wJ8wzk3HZgDfN3MZgB3AK8650qAVyPvRUQkAQw69J1zFc65dyM/1wEbgTHAAuDJyGRPAgujLVJERGIjJmP6ZlYMnAa8DRQ65yogvGEACmKxDBERiV7UoW9mQeB3wK3OudoBzHeDmZWZWVl1dXW0ZYiISD9EFfpmlkI48H/tnHs20lxpZkWRz4uAqp7mdc4tdc6VOudK8/PzoylDRET6KZqzdwx4DNjonHug00fLgcWRnxcDzw++PBERiSVfFPOeC3wRWGtm70fa7gKWAL81s+uBj4GroytRRERiZdCh75x7A7BePp432O8VEZGhoytyRUQ8RKEvIuIhCn0REQ9R6IuIeIhCX0TEQxT6IiIeotAXEfEQhb6IiIco9EVEPEShLyLiIdHce0dERAarrRWa6iFU1+lfLYR6aqvredpBUOiLiPSXc9DS2CV8uwRxt3Du5V9zQ/+WmZIG/gxIDYZf/Rkwcjz4g8C6Af8KCn0ROfG1tfYcvE39COeu07W19L08S44EdOaRoE7Lhezx3ds7wrxTmz/SlpoByceK6V8MeFUo9EUkMTkHzYf76EX3MhzSdbrmQ/1bZkp6p+CN/EvP696WGuwS0l3++QJgvd2EOL4U+iISW63NnXrI9V0Cuq5LSB9jvDpUD6617+Ul+ToFcGa4l5yeDzkTO4V0L+HcNciTkod+/cSZQl9Ewr3qpoZO4VvbKYB7aDtWmLcc7t8yU7sMZfgzIFgQDu7O49ddgznQKeBTg+DzJ2yvOhEp9EWOZy1NkQCu7dJT7u/4df2Rz1xb38tL9h8d0v5MyCiC3JKj27qGeXtbe5inBiFJZ4zHg0JfZLi1tYXP3BhUQHcJ99ZQPxZoPfeYM4p6PnjY60HGSK9ajmsKfZH+agkN7OBhj9NFhkZwfS/PF+gevJlj+hHSXQ4wpqSpVy0dFPpyYuu4AKavg4c9HWTsEuatTf1YoHUP3UAmZI2hx2GOHk/Vax+rTh3y1SPeo9CXxONcl15114OHAzjI2FTfv2W296o7B3HW2CMhfFRAdz3I2CnIU9N1UFESmkJfYqfrBTA9HmDsoa2nMO/XBTBJ3UN3RDaMPOnYAd3TmSHJKUO/fkQSgELf69ovgOmxF93bQcZewjzqy8q7nPGRGhka6XEoJBj+HvWqRQZEoX+8am3pdIZHf8ere5m2PxfA9HhZeR5kF/dxxsdALysXkaGkv77hFM1l5V2DfNCXlQchfUL30/d6PL+6U2gn8GXlItJ/Cv3+SITLyoMF4J/U+2l53Q44eueychHpvxM39NsvK+9xDHqYLyvvz30/Ou4PElSvWkSGTOKFfksTvV+R2J8rFwd5WXnHPT10WbmInLiGJPTN7BLgp0Ay8KhzbskxZ6jaAP8yiUFfVt4evEddVn6MgNZl5SLiUTEPfTNLBv4dmA+UA++Y2XLn3IZeZ0pJhxlXHONc6i5BnpKuXrWIyCAMRU//LGCrc24bgJktAxYAvYd+9nj43E+GoBQREelsKLrLY4Bdnd6XR9qOYmY3mFmZmZVVV1cPQRkiItLVUIR+T6eddLuloHNuqXOu1DlXmp+fPwRliIhIV0MR+uXAuE7vxwK7h2A5IiIyQEMR+u8AJWY2wcxSgWuB5UOwHBERGaCYH8h1zrWY2Y3AHwifsvm4c259rJcjIiIDNyTn6TvnVgArhuK7RURk8HSyu4iIhyj0RUQ8xJzrxwOah7oIszpgU7zrSBB5wN54F5EgtC6O0Lo4QuviiKnOuYyBzJAoN1zb5JwrjXcRicDMyrQuwrQujtC6OELr4ggzKxvoPBreERHxEIW+iIiHJEroL413AQlE6+IIrYsjtC6O0Lo4YsDrIiEO5IqIyPBIlJ6+iIgMA4W+iIiHxD30zewSM9tkZlvN7I541xMvZjbOzFaa2UYzW29mt8S7pngys2Qze8/MXoh3LfFmZiPN7Bkz+zDy/8fZ8a4pHszstsjfxjoz+42ZBeJd03Ays8fNrMrM1nVqyzGzV8xsS+Q1u6/viWvod3q04qXADGCRmc2IZ01x1AJ8wzk3HZgDfN3D6wLgFmBjvItIED8FXnbOTQNOxYPrxczGADcDpc65WYRv5nhtfKsadk8Al3RpuwN41TlXArwaeX9M8e7pdzxa0TnXBLQ/WtFznHMVzrl3Iz/XEf7D7vbEMS8ws7HAZcCj8a4l3swsEzgfeAzAOdfknDsY36rixgeMMDMfkIbHntPhnFsN7O/SvAB4MvLzk8DCvr4n3qHfr0creo2ZFQOnAW/Ht5K4eRD4NtAW70ISwESgGvhlZLjrUTNLj3dRw8059wlwP/AxUAHUOOf+GN+qEkKhc64Cwh1HoKCvGeId+v16tKKXmFkQ+B1wq3OuNt71DDcz+xxQ5ZxbE+9aEoQPOB142Dl3GtBAP3bhTzSRseoFwARgNJBuZl+Ib1XHp3iHvh6t2ImZpRAO/F87556Ndz1xci5whZntIDzcd6GZ/Sq+JcVVOVDunGvf63uG8EbAay4Ctjvnqp1zzcCzwDlxrikRVJpZEUDktaqvGeId+nq0YoSZGeFx243OuQfiXU+8OOfudM6Ndc4VE/7/4TXnnGd7dM65PcAuM5saaZoHbIhjSfHyMTDHzNIifyvz8OAB7R4sBxZHfl4MPN/XDHG9y6YerXiUc4EvAmvN7P1I212Rp5CJt90E/DrSMdoGfCXO9Qw759zbZvYM8C7hM93ew2O3YzCz3wBzgTwzKwfuAZYAvzWz6wlvGK/u83t0GwYREe+I9/COiIgMI4W+iIiHKPRFRDxEoS8i4iEKfRERD1Hoi4h4iEJfRMRD/j+9GdnLOSJafwAAAABJRU5ErkJggg==\n", "text/plain": [ "
" ] }, "metadata": { "needs_background": "light" }, "output_type": "display_data" } ], "source": [ "df.plot()" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Here we can see it gave us the values, but over the index and not over time. It also plotted time separately, when really we want to see the values versus time. By specifying `y` and `x`, we can fix this:" ] }, { "cell_type": "code", "execution_count": 7, "metadata": {}, "outputs": [ { "data": { "text/plain": [ "" ] }, "execution_count": 7, "metadata": {}, "output_type": "execute_result" }, { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAYAAAAEGCAYAAABsLkJ6AAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4xLjEsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy8QZhcZAAAgAElEQVR4nO3deXhU5fXA8e/JvieQTMISICxJ2AkQEFQIiiyuiHWjLqhU2rrUpbWu/Wnd6tJWq622VBBsVbS44IIERCWgCAYQSFgSVgmQDUggIfu8vz8yYAwJhEySm5k5n+eZZ2bu3HvnzEDumfu+732PGGNQSinlebysDkAppZQ1NAEopZSH0gSglFIeShOAUkp5KE0ASinloXysDuBMREVFmbi4OKvDUEopl7J27dpCY4yt/nKXSgBxcXGkp6dbHYZSSrkUEdnT0HJtAlJKKQ+lCUAppTyUJgCllPJQLtUHoJRSx1VVVZGTk0N5ebnVobQbAQEBxMbG4uvr26T1NQEopVxSTk4OoaGhxMXFISJWh2M5YwwHDx4kJyeHnj17NmkbbQJSSrmk8vJyIiMj9eDvICJERkae0RmRJgCllMvSg/9Pnen3oQngDOQfKWfB2hx0Cm2llDvQBHAGXvlqB7/73wY+3njA6lCUUhYbN24cqampP1n24osvcttttzW6TUhISGuHdUY0ATSRMYalm/MAePzjzRSXVVkckVLKStOmTWP+/Pk/WTZ//nymTZtmUURn7rQJQETmiEi+iGTUWXaViGSKiF1Ekuut/6CIbBeRbSIyqZF99hSR1SKSLSLviIif8x+ldWXsO8K+ojJuOjuOQ6UVPJ+61eqQPJ4xhi+35lN8TJOxantXXnkln3zyCRUVFQDs3r2b/fv3k5SUxPjx4xk2bBiDBg1i4cKFJ2371Vdfcckll5x4fscddzB37lwA1q5dS0pKCsOHD2fSpEkcOFDb4vDSSy/Rv39/Bg8ezLXXXtsin6Epw0DnAn8H3qizLAO4AvhX3RVFpD9wLTAA6AJ8LiIJxpiaevt8FnjBGDNfRP4JzABebdYnaCOpmbl4CfxmfDwiMPeb3fxsWCxDu3ewOjSP9cpXO3g+dRs3ju7B41MGWh2OstAfP85k8/4jLbrP/l3CePTSAY2+HhkZyciRI1m8eDFTpkxh/vz5XHPNNQQGBvLBBx8QFhZGYWEho0aN4rLLLmtSB21VVRV33nknCxcuxGaz8c477/Dwww8zZ84cnnnmGXbt2oW/vz9FRUUt8hlPewZgjEkDDtVbtsUYs62B1acA840xFcaYXcB2YGTdFaT2WzgfWOBYNA+4vBmxt6nUzFxG9uxIx2A/fjsxkZjQAB76IIPqGrvVoXmkN1bt5vnUbfh5e7E8q8DqcJSHqtsMdLz5xxjDQw89xODBg7ngggvYt28feXl5Tdrftm3byMjIYMKECSQlJfHkk0+Sk5MDwODBg7nuuuv473//i49Py1zC1dIXgnUFvq3zPMexrK5IoMgYU32KdU4QkZnATIDu3bu3XKRnYGdBCdn5Jfz8rP4AhPj78Oil/fn1m+uY+81ufjGmlyVxeaoP1ufwfwszuaBfDKN7R/LEJ5vZXVhKXFSw1aEpi5zql3pruvzyy7n33ntZt24dZWVlDBs2jLlz51JQUMDatWvx9fUlLi7upLH5Pj4+2O0//ng8/roxhgEDBrBq1aqT3uvTTz8lLS2Njz76iCeeeILMzEynE0FLdwI3dI5Tf8xkU9b58QVjZhljko0xyTbbSdNZt4nUzNrsPXFApxPLJg/sxPl9o/nr0iz2FZVZEpcnWpKZy+/+t5Gze0fy958P5YJ+0QB6FqAsERISwrhx47jllltOdP4WFxcTHR2Nr68vX375JXv2nDwTc48ePdi8eTMVFRUUFxezbNkyABITEykoKDiRAKqqqsjMzMRut7N3717OO+88nnvuOYqKiigpKXE6/pZOADlAtzrPY4H99dYpBCJExOcU67QrqZm5DI4Np2tE4IllIsIfLxuA3Rj++FGmhdF5jq+3F3LHW+sZ1DWcWTcmE+DrTY/IYOIigzQBKMtMmzaNDRs2nOiYve6660hPTyc5OZk333yTvn37nrRNt27duPrqq0806wwdOhQAPz8/FixYwP3338+QIUNISkrim2++oaamhuuvv55BgwYxdOhQ7rnnHiIiIpyOvaWbgD4C3hKRv1LbCRwPrKm7gjHGiMiXwJXAfGA6cHI3eTuRW1zO93uLuG9S4kmvdesYxN0XJPDMZ1tZujmPCf1jLIjQM6z74TC3vpFOz6hg5t48ghD/H//rpiTYeDc9h/KqGgJ8vS2MUnmiqVOn/uTi0KioqAabcICf/Gp/7rnneO65505aJykpibS0tJOWr1y5sgWi/ammDAN9G1gFJIpIjojMEJGpIpIDjAY+FZFUAGNMJvAusBlYDNx+fASQiCwSkS6O3d4P3Csi26ntE5jd0h+spSzZnAvApAENH9xnnNuTxJhQHl2YQWlFdYPrKOdsOXCEm+aswRbqz39mjCQi6KejhlMSbZRV1ZC++7BFESrlmpoyCmiaMaazMcbXGBNrjJltjPnA8djfGBNjjJlUZ/2njDG9jTGJxpjP6iy/yBiz3/F4pzFmpDGmjzHmKmNMRet8POelZubSyxZMn+jQBl/39fbi6SsGsr+4nBc/z2rj6NzfrsJSbpi9hiA/H/474yyiwwJOWmdUr0jHaKB8CyJUynXplcCnUHSskm93HmJSnc7fhgzv0ZFpI7sx5+vdLT4W2ZPtLyrj+tdWYzeG//5iJN06BjW4XpCfDyN6dtB+AA+k83L91Jl+H5oATmHZlnxq7Oa0CQDg/sl9iQj05eEPN2G3639KZx0sqeD62as5UlbFG7eMbPQM7LiUBBtZeSUcKNYRWZ4iICCAgwcPahJwOF4PICDg5LPkxmhBmFNIzcylU1gAg7uGn3bdiCA/Hr64H/e+u4G31vzA9aN6tEGE7qm4rIob56xhf1EZb9xyFgOb8P2nJETz9KKtpGUVcM0Ia64XUW0rNjaWnJwcCgr0zO+44xXBmkoTQCPKKmtIyy7g6uRueHk1bY7tqUO7smBtDs8u3sqkAZ2whfq3cpTup6yyhhlzvyMr7yj/vjGZkT07Nmm7hJgQOoUFsFwTgMfw9fVtcuUr1TBtAmrE8qwCyqvsTWr+OU5EeOLygVRU2Xny082tGJ17qqy288v/rmXdD4d58ZqhjEuMbvK2IkJKgo0V2YU6PYdSTaQJoBFLMnMJD/Rt8i/Q43rbQvjVuN4s/H4/K7L11LSpauyGu99ZT1pWAc9cMZiLB3c+432kJNo4Wl7N93tbZqIspdydJoAGVNXY+XxLHuP7RePrfeZf0W3jetMzKpg/fJhBeVX9iVBVfXa74cH3N7JoUy6PXNyPq0d0O/1GDTinTxTeXqKjgZRqIk0ADVi98xBHyqvPqPmnrgBfb56YMpDdB4/xylc7Wjg692KM4clPt/Bueg6/GR/v1MR64YG+DO0WoQlAqSbSBNCA1MxcAny9GBvf/Mnnzo2PYkpSF/751Q52FDg/aZO7emnZduZ8vYubz4njngvind5fSoKNjTnFFJa022sLlWo3NAHUY7cblmzOJSXBRqCfc/PKPHJxfwJ8vXj4g006VrkBc1bu4oXPs7hyeCx/uLh/kwpmnE5KYm3SXpld6PS+lHJ3mgDq2ZBTRN6RimY3/9RlC/Xn/gv78u3OQ3ywfl8LROc+3k3fy+OfbObCgZ145opBTR5qezoDu4TTMdiPNG0GUuq0NAHUk5qZh4+XML5vy8zsOW1Ed4Z2j+CpT7dQdKyyRfbp6j7bdIAH3tvImPgoXrw2CZ9mdLQ3xstLGBMfRVp2gV6RrdRpaAKowxjDksxcRvWKJDzIt0X26eUlPD11EEVlVTzzmRaSX55VwG/mr2do9w7864bh+Pu0/PTNKQk2Cksq2XxA52VS6lQ0AdSxPb+EnYWljU793Fz9Oocx49yezP9uL9/tPnT6DdzUd7sP8cv/pBMfHcqcm0YQ5Nc6F6KPcXTe62ggpU5NE0AdqZm1c/9P6O98+399d18QT9eIQB7+YBNVHnilasa+Ym55/Tu6hAfyxoyRhAe2zBlWQ2yh/gzsGsbybZoAlDoVTQB1pGbmkdQtgk7hTZ9Nr6mC/Hz442UDyMor4bUVu1p8/+3Z9vwSps9ZQ1igL//9xVlEhbT+HEkpCTbW/nCYI+VVrf5eSrkqTQAO+4rK2LSvuEVG/zTmgv4xTOwfw9+WZbH30LFWe5/2JOfwMW6YvRoR+M+MkXSpU1e5NaUkRFNjN3yzXYeDKtWYppSEnCMi+SKSUWdZRxFZKiLZjvsOjuX3icj3jluGiNSIyEmT6YjIXBHZVWfdpJb9WGduSeapSz+2lMcuG4C3CP+3MMPtrw0oOFrB9a+tprSimjduOYtetpA2e++h3SMI9ffRfgClTqEpZwBzgcn1lj0ALDPGxAPLHM8xxjxvjEkyxiQBDwLLjTGN9Xred3xdY8z3zQu/5aRm5hIfHdLqB6kuEYHcMyGBL7cVsDgjt1Xfy0rFx6q4YfZq8o5U8PrNI+nfJaxN39/X24tz+kSxfFuB2ydapZqrKTWB04D6B/EpwDzH43nA5Q1sOg1426no2sih0krW7Dp96ceWctPZcfTvHMZjH2dy1A3bqEsrqrlp7hp2FpQy68bhDO/RwZI4xibY2F9crlNxKNWI5vYBxBhjDgA47n8ycbuIBFF71vDeKfbxlIhsFJEXRKTRXkERmSki6SKS3lqVfz7fkofdwOSBbZMAfLy9ePqKQeQfreAvS9yrkHx5VQ0z/5POxpxiXpo29MSQTCuMTYgC4CsdDaRUg1qrE/hS4OtTNP88CPQFRgAdgfsb25ExZpYxJtkYk2yztc7BZElmLl0jAhnQhs0USd0iuP6sHryxajebcorb7H1bU3WNnd+8vZ6vtx/kuZ8NbrOE2pjYDkH0iQ7RfgClGtHcBJAnIp0BHPf59V6/llM0/xhjDphaFcDrwMhmxuG00opq0rILmTggpkUmIzsT901OJDLEn4c/3ESNi09bYLcbfr9gI0s25/HYpf352fCm1yVtTSkJNlbvOkRZpdZlUKq+5iaAj4DpjsfTgYXHXxCRcCCl7rL66iQPobb/IKOxdVvb8qwCKqvPrPRjSwkL8OUPl/RnY04x/1m1u83fv6UYY/jjx5m8v34fv52QwE3ntJ86rSkJNiqr7Xy766DVoSjV7jRlGOjbwCogUURyRGQG8AwwQUSygQmO58dNBZYYY0rr7WeRiHRxPH1TRDYBm4Ao4EnnP0rzpGbm0jHYjxFxZ1b6saVcOrgzY+Kj+POSLPKOlFsSg7P+ujSLeav2MHNsL+44v4/V4fzEyJ4dCfD10quClWrAaSdjMcZMa+Sl8Y2sP5faoaP1l19U5/H5TQuvdVVW2/liaz4XDuyEdwtNR3ymRIQnLx/IxBfSePzjzfzjumGWxNFcs9J28PIX27l2RDcevLBvmzejnU6ArzejekXq9NBKNcCjrwRetfMgR50o/dhSekQGc+f5ffh00wG+3Fa/O6X9envNDzy9aCuXDO7MU1MHtbuD/3EpCTZ2FpZ6zNXXSjWVRyeAxRm5BPt5c06fKKtD4daxvehtqy0k3947LAuOVvDc4q089MEmzku08derkyw7g2qKlASdHVSphnhsAqixG5ZuzmNcYjQBvi0/J/2Z8vfx5qmpg8g5XMbLX2RbHU6DdhSU8OD7Gznn2S94dfkOLhnchVeuG46fT/v+b9QzKphuHQM1AShVT+tMyO4C1v9wmMKSCia28tw/Z2JUr0iuHB7LrLSdXD60KwkxoVaHBED67kP8c/lOPt+Sh7+PF1cNj2XGuT3bdG4fZ4gIY+NtfLh+H5XV9nafsJRqKx77l5CamYuvt3Be3+jTr9yGHrqoHyEBPjz8wSZLSxrW2A2LMw5wxStfc+U/V7F2zyF+Mz6erx84n6emDnKZg/9xKQk2SitrWLvnsNWhKNVueOQZgDGG1Mw8zu4dRVhA6xUmaY6OwX48dGE/fv/eRhaszeHqEd3a9P3Lq2pYsDaH2St3sauwlO4dg3h8ygCuHB7bahW82sLZfaLw8RKWZxUwunek1eEo1S647l+0E7bmHuWHQ8f4VUpvq0Np0FXJsSxYm8PTn21hfL9oItuggMqh0kr+s2oPb6zazcHSSobEhvOPnw9jsoVDZFtSiL8PyXEdWJ5VwAMX9rU6HKXaBY9sAkrNzEUEJvRvP+3/dYkIT00dSEl5NU8vat1C8nsOlvKHDzM4+5llvPB5FkndInhn5ig+vP0cLh7c2S0O/selJESz5cARl73gTqmW5pFnAKmZeQzv3gFbaOv/sm6u+JhQZo7txStf7eDK4bEt3mzx/d4iZqXtYHFGLj5eXlw+tAu3julFfDvpeG4NKQk2nl28lbSsAq5KbtumNaXaI49LAHsPHWPLgSM8fFE/q0M5rTvPj+fjjft5+MNNfHbXGPx9nBuuarcbvtiaz6wVO1mz6xChAT78MqU3N58dR3RYy9dBbm/6dQ7FFurPck0ASgEemABST5R+tPbq36YI9PPmiSkDuen175i1fCd3jo9v1n4qqmv4cP0+/r1iF9vzS+gSHsAjF/fj2pHdCfH3nP8CIkJKgo3Pt+RRYzdu1bylVHN4zl+/Q2pmLn07hdI9MsjqUJpkXGI0Fw/qzMtfbufSIV2Iiwpu8rbFx6r47+o9zP1mNwVHK+jXOYwXr0ni4sGd8fX2yO4fUhJsLFibw8acIoZ2t6ZSmVLthUclgIKjFaTvOcxvzm/eL2mr/N+l/UnLKuAPCzN445aRp51zJ+fwMWav3MU73+3lWGUNY+KjeOHqJM7pE9lu5+tpK+f2iUKkdloITQDK03lUAvh8Sx7GuEbzT10xYQH8blIij36UyccbD3DZkC4Nrpexr5hZaTv5dNMBBLh0SG3HblsXZG/POgT7MSQ2guVZBdx9QYLV4ShlKY9KAKmZuXTrGEi/zq430uX6UT14b10Oj3+8mZQEG+GBtRewGWNIyy5kVtoOvt5+kBB/H245J46bz+lJl4hAi6Nun1ISbLz8RTaHSyvpEOxndThKWcZjGoKPllfxzfaDTOrfySWbQby9hKenDuJQaQXPp26lstrOe2tzuPBvK5g+Zw3b80t44MK+fP3A+Tx8cX89+J9CSqINu4GV2wutDkUpS532DEBE5gCXAPnGmIGOZR2Bd4A4YDdwtTHmsIiMo7YU5C7H5u8bYx5vYJ89gfnUFoRfB9xgjKl09sOcypfbCqissTPJ4kLlzhjYNZzpZ8cx95vdLN2cR96RChJiQnj+ysFMSeqqk5w10ZDYCMIDfVmeVcCljTSnKeUJmnLEmAtMrrfsAWCZMSYeWOZ4ftwKY0yS43bSwd/hWeAFx/aHgRlnFvaZS83MJSrEj2Eu3vH324mJJESH0jMqmNdvGkHq3WO5KrmbHvzPgLeXMCY+iuVZBRhj3YR7SlnttEcNY0wacKje4inAPMfjedQWdm8SRyH484EFzdm+Ocqravhqaz4T+rv+vDYh/j6k3jOW+TNHc17faJdszmoPUhJsFBytYMuBo1aHopRlmvuzMcYYcwDAcV93TuXRIrJBRD4TkQENbBsJFBljqh3Pc4Cujb2RiMwUkXQRSS8oaF5Bj292FFJaWcOkdjT3v7LW8SphadlaJEZ5rpZuN1gH9DDGDAFeBj5sYJ2GfrI2eh5ujJlljEk2xiTbbLZmBZWakUeovw9n97a+9KNqH6LDAujXOYzl2zQBKM/V3ASQJyKdARz3+QDGmCPGmBLH40WAr4jUP+oWAhEicrwDOhbY38w4TqvGbvh8Sx7n9Y3WdnL1EykJNtL3HKKkovr0Kyvlhpp7RPwImO54PJ3akT+ISCdHGz8iMtKx/4N1NzS1vW5fAlfW3741pO8+xMHSSpe7+Eu1vrEJUVTVGFbtOHj6lZVyQ6dNACLyNrAKSBSRHBGZATwDTBCRbGCC4znUHtQzRGQD8BJwreOAj4gsEpHjY+7uB+4Vke3U9gnMbskPVVdqZh5+Pl6MS2xe85FyX8k9OhLk583yrHyrQ1HKEqe9DsAYM62Rl8Y3sO7fgb83sp+L6jzeCYxsYozNVlv6MZcxfaII9qBZL1XT+Pl4cXbvKL7aVjscVEdUKU/j1o3imfuPsK+oTJt/VKNSEm3kHC5jV2Gp1aEo1ebcOgEsyczFS2B8v+jTr6w8Ukp8bdPg8iwdDaQ8j1sngNTMPEbEdWyTourKNXWPDKJXVLAmAOWR3DYB7C4sZVveUW3+Uac1NsHGtzsPUl5VY3UoSrUpt00Ax0s/TtSrf9VppCTaKK+y893u+jOeKOXe3DoBDOwaRmwH1yj9qKwzqmckfj5eelWw8jhumQDyjpSz7ociJvXX5h91eoF+3pzVs6P2AyiP45YJYMnmPACXnvtfta2UBBvZ+SXsKyqzOhSl2ox7JoDMXHpGBRMfHWJ1KMpFnJgdVM8ClAdxuwRQfKyKVTsOMnFAjF7ZqZqsT3QIXcIDtB9AeRS3SwBfbMuj2m50+Kc6IyJCSqKNr7cXUlVjtzocpdqE2yWA1Iw8okP9SYqNsDoU5WJSEmwcrajm+71FVoeiVJtwqwRQXlXD8qwCJg6IwcvFSz+qtnd2nyi8vUSbgZTHcKsEkJZVQFlVjTb/qGYJC/BlePcOOhxUeQy3SgCpmXmEBfgwqlek1aEoF5WSaGPTvmIKSyqsDkWpVuc2CaC6xs6yrXmM7xeDr7fbfCzVxsY6ZgddocXilQdwmyPlml2HKDpWxSSd+0c5YUCXMCKD/bQfQHmEppSEnCMi+SKSUWdZRxFZKiLZjvsOjuXXichGx+0bERnSyD7nisguEfnecUty9oOkZuYS4OvF2AQt/aiaz8tLGJtgIy27ELvdWB2OUq2qKWcAc4HJ9ZY9ACwzxsQDyxzPAXYBKcaYwcATwKxT7Pc+Y0yS4/b9mYX9U8YYlmzOY2y8jSA/Lf2onJOSYONQaSUZ+4utDkWpVnXaBGCMSQPqz5M7BZjneDwPuNyx7jfGmMOO5d8CsS0U5yltzCnmQHG5jv5RLWJMfBQiaDOQcnvN7QOIMcYcAHDcN1RzcQbw2Sn28ZSjqegFEWm0ZJeIzBSRdBFJLyho+A8yNTMXby/R0o+qRUSG+DOoazhp2hGs3FyrdAKLyHnUJoD7G1nlQaAvMALoeIr1MMbMMsYkG2OSbbaG2/dTM3MZ1asjEUF+zgWulENKgo11PxRRXFZldShKtZrmJoA8EekM4LjPP/6CiAwGXgOmGGMONrSxMeaAqVUBvA6MbGYcbM8vYUdBqTb/qBaVkmCjxm74Znuh1aEo1WqamwA+AqY7Hk8HFgKISHfgfeAGY0xWYxvXSR5Cbf9BRmPrns6J0o9a/EW1oKRuEYQG+OhVwcqtNWUY6NvAKiBRRHJEZAbwDDBBRLKBCY7nAP8HRAKvOIZ3ptfZzyIR6eJ4+qaIbAI2AVHAk839AEsycxnSLYJO4QHN3YVSJ/Hx9mJMfBTLswowRoeDKvd02jGTxphpjbw0voF1fwH8opH9XFTn8flNDfBUDhSXsSGnmN9PTmyJ3Sn1E2PjbSzalEt2fgkJMaFWh6NUi3PpK4GXZDpKP2r7v2oFxy8q1OGgyl25dAJIzcylT3QIvW1a+lG1vC4RgSTEhGg/gHJbLpsADpdWsnrXIZ37R7WqlAQba3Yd4lhltdWhKNXiXDYBLNuaT42WflStLCUhmsoaO6t31r8YXinX57IJIDUzly7hAQzqGm51KMqNJcd1INDXW5uBlFtyyQRwrLKatKwCJg7oRO2lBEq1jgBfb0b3jtQEoNySSyaAtKwCKqrtTNT2f9UGUhJs7CosZc/BUqtDUapFuWQCSM3Mo0OQLyPjOlodivIAKY7hoGl6FqDcjMslgMpqO8u21JZ+9NHSj6oNxEUF071jkDYDKbfjckfQb3ce5Eh5tY7+UW0qJcHGNzsOUlFdY3UoSrUYl0sAqZm5BPl5MyY+yupQlAdJSbBxrLKGtbsPn35lpVyEyyWApZvzSEmwEeDrbXUoyoOM7h2Jr7ewXIvEKDfiUgngWGUN+UcrtPlHtblgfx9GxHXUeYGUW3GpBHCkrAofL+G8vlr6UbW9lAQbW3OPknek3OpQlGoRLpUAisuqGN07kvBAX6tDUR4oJdExO6iOBlJuwqUSQGWNXZt/lGUSY0KJCfPXBKDcRpMSgIjMEZF8Ecmos6yjiCwVkWzHfQfHchGRl0Rku4hsFJFhjexzuIhscqz3kjRxToeJ/fXqX2UNESElwcbK7EKqa+xWh6OU05p6BjAXmFxv2QPAMmNMPLDM8RzgQiDecZsJvNrIPl91vH583fr7P0mQnzfRYVr6UVknJSGa4rIqNuQUWx2KUk5rUgIwxqQB9efDnQLMczyeR21x9+PL3zC1vgUijheBP87xPMwYs8rUFlx9o872jYrQtn9lsXP7ROEl2g+g3IMzfQAxxpgDAI7740NzugJ766yX41hWV1fH8lOtA4CIzBSRdBFJt5cdcSJcpZwXHuRLUrcITQDKLbRGJ3BDbfmmGevULjRmljEm2RiTbLPZnA5OKWelJESzMaeIw6WVVoeilFOcSQB5x5t2HPf5juU5QLc668UC++ttm+NYfqp1lGqXUhJtGAMrthdaHYpSTnEmAXwETHc8ng4srLP8RsdooFFA8fGmouMcz4+KyCjH6J8b62yvVLs2qGs4HYJ89apg5fKaOgz0bWAVkCgiOSIyA3gGmCAi2cAEx3OARcBOYDvwb+C2Ovv5vs5ufw285lhvB/CZcx9Fqbbh7SWMibexPKsAu73BlkulXIJPU1Yyxkxr5KXxDaxrgNsb2U9SncfpwMCmvL9S7U1Kgo2PNuxnS+4RBnTRutTKNbnUlcBKtRdjEmqnI9fRQMqVaQJQqhmiQwMY0CVM+wGUS9MEoFQzjU2wsXbPYY6WV1kdilLNoglAqWZKSbBRbTd8s+Og1aEo1SyaAJRqpmHdOxDi70Oa9gMoF6UJQKlm8vPx4uzekSzPKqB28JtSrkUTgFJOSEm0kTWH2r8AABS1SURBVHO4jJ2FpVaHotQZ0wSglBPGxjuqhOloIOWCNAEo5YRuHYPobQvW6wGUS9IEoJSTzkuM5psdhWTs0yIxyrVoAlDKSb8e15vIYH9uf2sdR/SaAOVCNAEo5aTIEH/+/vOh7Dtcxn3/26AjgpTL0ASgVAtIjuvIAxf2JTUzj9krd1kdjlJNoglAqRYy49yeTB7QiT99tpX03fVLaCvV/mgCUKqFiAjPXTWY2A6B3PHWegpLKqwOSalT0gSgVAsKC/DlleuGcfhYJXfP/54aLRij2jFNAEq1sAFdwnl8ygBWbi/kb8uyrQ5HqUY5lQBE5C4RyRCRTBG527HsHRH53nHbXa8MZN1td4vIJsd66c7EoVR7c3VyN64cHsvLX2TrRWKq3Wp2AhCRgcCtwEhgCHCJiMQbY64xxiQ5yj++B7x/it2c51g3ublxKNUeiQhPTBlIYkwod89fz/6iMqtDUuokzpwB9AO+NcYcM8ZUA8uBqcdfFBEBrgbedi5EpVxToJ83r1w3jKoaw+1vraOy2m51SEr9hDMJIAMYKyKRIhIEXAR0q/P6GCDPGNNYI6gBlojIWhGZ2dibiMhMEUkXkfSCAj2VVq6lly2EZ382mPU/FPHMZ1utDkepn/Bp7obGmC0i8iywFCgBNgDVdVaZxql//Z9jjNkvItHAUhHZaoxJa+B9ZgGzAJKTk3VIhXI5Fw/uzHe745jz9S6S4zpw0aDOVoekFOBkJ7AxZrYxZpgxZixwCMgGEBEf4ArgnVNsu99xnw98QG1fglJu6aGL+pHULYLfL9jIzoISq8NRCnB+FFC04747tQf847/4LwC2GmNyGtkuWERCjz8GJlLbpKSUW/Lz8eIf1w3D11u47c11lFXWWB2SUk5fB/CeiGwGPgZuN8Ycdiy/lnrNPyLSRUQWOZ7GACtFZAOwBvjUGLPYyViUate6RgTywjVJbMs7yv8t1N87ynrN7gMAMMaMaWT5TQ0s209tRzHGmJ3UDh1VyqOMS4zmzvP68NIX2xkR15GrR3Q7/UZKtRK9ElipNnbXBQmc0yeSPyzMYPP+I1aHozyYJgCl2pi3l/C3a4cSEeTLbW+u1SIyyjKaAJSyQFSIP3//+TD2Hi7j9//bqEVklCU0AShlkRFxHbl/ciKLM3OZ8/Vuq8NRHkgTgFIWunVMLyb2j+FPi7awdo8WkVFtSxOAUhYSEZ6/aghdIgK5/c31HNQiMqoNaQJQymLhgbVFZA4dq+Tud7SIjGo7mgCUagcGdg3nj5cNYEV2IS9/oUVkVNvQBKBUO3HtiG5cMawrf1uWzYpsnflWtT5NAEq1EyLCk5cPJD46hLvmf8+BYi0io1qXJgCl2pEgPx9evX44FVU13PHWeqpqtIiMaj2aAJRqZ3rbQnjmZ4NZu+cwz2oRGdWKNAEo1Q5dOqQL00f34LWVu1icccDqcJSb0gSgVDv10MX9GNItgvv+t5HdhaVWh6PckCYApdopfx9v/vHzoXh5Cb9+cx3lVVpERrUsTQBKtWOxHYJ48Zokthw4wqMLM60OR7kZZ0tC3iUiGSKSKSJ3O5Y9JiL7ROR7x+2iRradLCLbRGS7iDzgTBxKubPz+kZzx3l9eCd9L/9L32t1OMqNNDsBiMhA4FZqi7kPAS4RkXjHyy8YY5Ict0UNbOsN/AO4EOgPTBOR/s2NRSl3d8+EBEb3qi0is+WAFpFRLcOZM4B+wLfGmGPGmGpgOTC1iduOBLYbY3YaYyqB+cAUJ2JRyq15ewl/m5ZEWIAvt725jqNaREa1AGcSQAYwVkQiRSSI2nq/xwuc3iEiG0Vkjoh0aGDbrkDdc9kcx7KTiMhMEUkXkfSCAr08Xnmu6NAAXp42lB8OHeP+97SIjHJesxOAMWYL8CywFFgMbACqgVeB3kAScAD4SwObS0O7bOR9Zhljko0xyTabrbnhKuUWzuoVyX2TElm0KZe53+y2Ohzl4pzqBDbGzDbGDDPGjAUOAdnGmDxjTI0xxg78m9rmnvpy+PFsASAW2O9MLEp5ipljenFBvxie+nQLa/cctjoc5cKcHQUU7bjvDlwBvC0ineusMpXapqL6vgPiRaSniPgB1wIfOROLUp7Cy0v4y1VD6BQewB1vreNQaaXVISkX5ex1AO+JyGbgY+B2Y8xh4DkR2SQiG4HzgHsARKSLiCwCcHQa3wGkAluAd40xOshZqSYKD/Ll1euGc7CktoiMXYvIqGYQV+pISk5ONunp6VaHoVS78ebqPTz8QQb3TkjgN+PjT7+B8kgistYYk1x/uV4JrJQL+/nI7lye1IUXPs9iZXah1eEoF6MJQCkXJiI8NXUQfWwh3DV/vRaRUWdEE4BSLi7Y34dXrx9GeVUN1876lr2HjlkdknIRmgCUcgN9okP5zy/O4nBpJVf9cxXb80usDsljGWPIzjvK7JW7eG3FTo5VVlsdUqO0E1gpN7LlwBFumL0aY2DeLSMZ2DXc6pA8wqHSSlZuL2RFVgErsgvJPVJ+4rWYMH/um9SXK4Z2xcuroWtgW19jncCaAJRyMzsLSrj+tdUcrahm7s0jGN6jo9UhuZ3Kajtr9xxmRXbtAT9jfzHGQHigL+f2iWJMfBTnxkeRd6Scxz/Zwoa9RQzsGsYjF/dnVK/INo9XE4BSHmRfURnXv7aa3OJy/n1jMufGR1kdkkszxrCzsPTEL/xVOw9yrLIGHy9hWPcOjImPYkyCjUFdw/Gu9yvfbjd8vHE/z362lf3F5UwaEMMDF/ajZ1Rwm8WvCUApD1NwtIIbZq9mZ0EpL/98KJMGdLI6JJdSdKySr7cfPPErf19R7QiruMggxsTbGBMfxejekYQG+DZpf+VVNcxeuYtXvtxOZY2dG0fH8Zvz4wkPatr2ztAEoJQHKjpWyU2vf8emfcX8+arBTB0aa3VI7VZVjZ31PxSxIruAtOxCNuYUYQyEBvhwTu8oxiREMaaPje6RQU69T/7Rcl5YmsU73+0lLNCXu8bHc/2oHvh6t96YHE0ASnmokopqbp2Xzre7DvL4lIHcMKqH1SG1C8YY9hw8duKAv2rHQUoqqvESSOoWwdgEG2PibQyJDcenFQ7OWw4c4alPt7ByeyG9ooJ58KJ+XNAvGpGW7yjWBKCUByuvquH2N9exbGs+90/uy6/H9bY6JEsUl1WxakchadmFrMguYO+h2mad2A6BjE2wMTY+itG9owgPbP1mGahNQl9tK+DJTzezo6CU0b0ieeSSfgzo0rKjtzQBKOXhqmrs3PvuBj7esJ/bz+vN7yYmtsqvzfakusbOhpziE+343+8tosZuCPH3YXTvSMbGRzEm3kaPyCBLv4uqGjtvr/mBF5ZmUVRWxVXDY/ntxERiwgJaZP+aAJRS1NgNj3y4ibfX7GX66B48eukAy8amt5aqGjsfrN/HF1vy+XpHIUfLqxGBwbERpDhG6yR1i2jVNvfmKi6r4h9fbuf1r3fh6+3Fr1J6c+uYXgT6eTu1X00ASimgttnh6UVb+PeKXVwxrCvP/Wxwq7RxW2HtnkM8/EEGW3OP0iU84EQ7/jl9IokI8rM6vCbbc7CUZxdvZdGmXDqFBfD7yYlcntT8C8k0ASilTjDG8PIX2/nr0iwmD+jE36Yl4e/j3K9MKx0ureTZxVuZ/91euoQH8OhlA5jYP8blm7i+232IJz7ZzMacYgZ1DeeRi/txVjMuJNMEoJQ6yZyVu3j8k82MiY/iXzcMJ8jPx+qQzogxhgVrc/jTZ1spLqtixrk9uWt8PMH+rvU5TsVuNyzcsI/nFm/jQHE5kwd04oEL+xJ3BheStUoCEJG7gFupLfL+b2PMiyLyPHApUAnsAG42xhQ1sO1u4ChQA1Q3FFx9mgCUannvfreXB97fyLDuHZhz8wjCmnhhk9Wy8o7yyAcZrNl9iOQeHXhy6kD6dgqzOqxWU1ZZw2srdvLq8h1U1diZPjqOO8fHN2nEUosnABEZCMyntuh7JbAY+DXQE/jCGFMtIs8CGGPub2D73UCyMabJVSw0ASjVOj7deIC731lPYqdQ5t08ksgQf6tDatSxympeWrad11bsJCTAhwcv7MtVw7u5XWd2Y/KPlPOXJVm8u3YvEYG+3H1BAj8/q/spO7VboyJYP+BbY8wxR43f5cBUY8wSx3OAbwG99FCpdu7iwZ2ZdWMy2XklXDPrW3KLy0+/kQU+35zHhL+m8c/lO7hiWFe++O04rhnR3WMO/gDRYQE8e+VgPrnzXPp1DuPRjzKZ9GIay7bkcaY/6J1JABnAWBGJFJEg4CKgW711bgE+a2R7AywRkbUiMtOJOJRSLeC8xGjm3TKS3OJyrvrXN/xwsP0UltlXVMbMN9L5xRvpBPt7879fjea5K4fQMdh1Rva0tAFdwnnzF2fx2o3JYGDGvHSun72azfuPNHkfzvYBzABuB0qAzUCZMeYex2sPA8nAFaaBNxGRLsaY/SISDSwF7jTGpDWw3kxgJkD37t2H79mzp9nxKqVOb8PeIqa/vgY/by/e/MVZxMeEWhZLVY2dOSt38eLn2QDcdUE8M87t2S7H8FupqsbOm9/u4cVl2RSXVXH18G78dmIC0Y4LyVp9FJCIPA3kGGNeEZHpwK+A8caY0/6MEJHHgBJjzJ9PtZ72ASjVNrblHuX62auprrHzxi1nMSi27QvLpO+uHdO/Le8oE/rH8Oil/Ynt4NxEbO6u+FgVL3+RzbxVu/H19uLXKb25dWwvAv18WmUUULQxJl9EugNLgNHAWcBfgRRjTEEj2wUDXsaYo47HS4HHjTGLT/V+mgCUajt7DpZy3WurKT5WxeybRjCyZ9sUljlUWskzn23h3fQcukYE8thlA5jQP6ZN3ttd7C4s5ZnPtrI4M5cu4QGseuiCFu8EBnhPRDYDHwO3G2MOA38HQoGlIvK9iPwTapt8RGSRY7sYYKWIbADWAJ+e7uCvlGpbPSKD+d+vRhMd5s+Nc1bz1bb8Vn0/u93w7nd7Gf+Xr3h/3T5+mdKLpfeO1YN/M8RFBfPPG4bzzsxRRIU2PqJLLwRTSp1SYUkFN85eQ3b+UV66digXDurc4u+xNfcIj3yQQfqew4yI68CTlw8isZN1fQ/uxBiDl5dXq5wBKKXcXFSIP2/PHMXg2Ahuf2sdC9bmtNi+j1VW86dFW7jkpZXsKCjhuSsH887M0Xrwb0Gnmg7Dfa6XVkq1mvBAX/4zYyS//M9afve/DZSUV3HTOT2d2ueSzFwe+yiT/cXlXDuiG/dP7ksHDx7WaQVNAEqpJgny8+G16cnc+dZ6Hvt4M6WVNdw2rvcZT7iWc/gYj32Uyedb8kmMCWXBtKEkx7VNB7P6KU0ASqkm8/fx5pXrhvH7BRt5PnUbR8qreGBy3yYlgaoaO6+t2MVLy7IRgYcu6svN5+iYfitpAlBKnREfby/+fNUQgv19+NfynZSUV/PElIGnnI5h9c6DPPJhBtn5JUzsH8Ojlw2ga0RgG0atGqIJQCl1xry8hMenDCAkwIdXv9pBaUU1z1815KRf8wdLKvjTZ1tZsLZ2TP9rNyZzgQ7rbDc0ASilmkVEuH9yX0IDfHhu8TZKK2t4edpQAny9a8f0p+/lmcVbKSmv5tfjenPn+X1crt6Au9N/DaWUU24b14dQfx/+sDCTGfO+494JiTz16WbW/VDEyJ4defLygSRYOJ+QapwmAKWU024YHUeQnw/3LdjAz7Z/Q8dgP/581RB+Nqyry5dldGeaAJRSLeJnw2PpEOzL6l2H+HVKb5cqwu6pNAEopVrM+X1jOL+vdvK6Ch2Aq5RSHkoTgFJKeShNAEop5aE0ASillIfSBKCUUh5KE4BSSnkoTQBKKeWhNAEopZSHcqmawCJSAOyxOIwooNDiGNoL/S5+pN/Fj/S7+FF7+S56GGNs9Re6VAJoD0QkvaHiyp5Iv4sf6XfxI/0uftTevwttAlJKKQ+lCUAppTyUJoAzN8vqANoR/S5+pN/Fj/S7+FG7/i60D0AppTyUngEopZSH0gSglFIeShNAE4lINxH5UkS2iEimiNxldUxWExFvEVkvIp9YHYuVRCRCRBaIyFbH/4/RVsdkFRG5x/H3kSEib4tIgNUxtRURmSMi+SKSUWdZRxFZKiLZjvsOVsZYnyaApqsGfmuM6QeMAm4Xkf4Wx2S1u4AtVgfRDvwNWGyM6QsMwUO/ExHpCvwGSDbGDAS8gWutjapNzQUm11v2ALDMGBMPLHM8bzc0ATSRMeaAMWad4/FRav/Iu1oblXVEJBa4GHjN6lisJCJhwFhgNoAxptIYU2RtVJbyAQJFxAcIAvZbHE+bMcakAYfqLZ4CzHM8ngdc3qZBnYYmgGYQkThgKLDa2kgs9SLwe8BudSAW6wUUAK87msNeE5Fgq4OygjFmH/Bn4AfgAFBsjFlibVSWizHGHIDaH5FAtMXx/IQmgDMkIiHAe8DdxpgjVsdjBRG5BMg3xqy1OpZ2wAcYBrxqjBkKlNLOTvPbiqN9ewrQE+gCBIvI9dZGpU5FE8AZEBFfag/+bxpj3rc6HgudA1wmIruB+cD5IvJfa0OyTA6QY4w5fja4gNqE4IkuAHYZYwqMMVXA+8DZFsdktTwR6QzguM+3OJ6f0ATQRCIi1LbzbjHG/NXqeKxkjHnQGBNrjImjtpPvC2OMR/7SM8bkAntFJNGxaDyw2cKQrPQDMEpEghx/L+Px0A7xOj4CpjseTwcWWhjLSXysDsCFnAPcAGwSke8dyx4yxiyyMCbVPtwJvCkifsBO4GaL47GEMWa1iCwA1lE7am497XwqhJYkIm8D44AoEckBHgWeAd4VkRnUJsirrIvwZDoVhFJKeShtAlJKKQ+lCUAppTyUJgCllPJQmgCUUspDaQJQSikPpQlAKSc5ZgO9zeo4lDpTmgCUcl4EoAlAuRxNAEo57xmgt4h8LyLPWx2MUk2lF4Ip5STH7LCfOObAV8pl6BmAUkp5KE0ASinloTQBKOW8o0Co1UEodaY0ASjlJGPMQeBrRyF07QRWLkM7gZVSykPpGYBSSnkoTQBKKeWhNAEopZSH0gSglFIeShOAUkp5KE0ASinloTQBKKWUh/p/oNiPGluF/DAAAAAASUVORK5CYII=\n", "text/plain": [ "
" ] }, "metadata": { "needs_background": "light" }, "output_type": "display_data" } ], "source": [ "df.plot(y='Values', x='t')" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Now we can indeed see the values plotted over time. This is a line plot. We could have also created it via `.plot.line()`:" ] }, { "cell_type": "code", "execution_count": 8, "metadata": {}, "outputs": [ { "data": { "text/plain": [ "" ] }, "execution_count": 8, "metadata": {}, "output_type": "execute_result" }, { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAYAAAAEGCAYAAABsLkJ6AAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4xLjEsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy8QZhcZAAAgAElEQVR4nO3deXhU5fXA8e/JvieQTMISICxJ2AkQEFQIiiyuiHWjLqhU2rrUpbWu/Wnd6tJWq622VBBsVbS44IIERCWgCAYQSFgSVgmQDUggIfu8vz8yYAwJhEySm5k5n+eZZ2bu3HvnzEDumfu+732PGGNQSinlebysDkAppZQ1NAEopZSH0gSglFIeShOAUkp5KE0ASinloXysDuBMREVFmbi4OKvDUEopl7J27dpCY4yt/nKXSgBxcXGkp6dbHYZSSrkUEdnT0HJtAlJKKQ+lCUAppTyUJgCllPJQLtUHoJRSx1VVVZGTk0N5ebnVobQbAQEBxMbG4uvr26T1NQEopVxSTk4OoaGhxMXFISJWh2M5YwwHDx4kJyeHnj17NmkbbQJSSrmk8vJyIiMj9eDvICJERkae0RmRJgCllMvSg/9Pnen3oQngDOQfKWfB2hx0Cm2llDvQBHAGXvlqB7/73wY+3njA6lCUUhYbN24cqampP1n24osvcttttzW6TUhISGuHdUY0ATSRMYalm/MAePzjzRSXVVkckVLKStOmTWP+/Pk/WTZ//nymTZtmUURn7rQJQETmiEi+iGTUWXaViGSKiF1Ekuut/6CIbBeRbSIyqZF99hSR1SKSLSLviIif8x+ldWXsO8K+ojJuOjuOQ6UVPJ+61eqQPJ4xhi+35lN8TJOxantXXnkln3zyCRUVFQDs3r2b/fv3k5SUxPjx4xk2bBiDBg1i4cKFJ2371Vdfcckll5x4fscddzB37lwA1q5dS0pKCsOHD2fSpEkcOFDb4vDSSy/Rv39/Bg8ezLXXXtsin6Epw0DnAn8H3qizLAO4AvhX3RVFpD9wLTAA6AJ8LiIJxpiaevt8FnjBGDNfRP4JzABebdYnaCOpmbl4CfxmfDwiMPeb3fxsWCxDu3ewOjSP9cpXO3g+dRs3ju7B41MGWh2OstAfP85k8/4jLbrP/l3CePTSAY2+HhkZyciRI1m8eDFTpkxh/vz5XHPNNQQGBvLBBx8QFhZGYWEho0aN4rLLLmtSB21VVRV33nknCxcuxGaz8c477/Dwww8zZ84cnnnmGXbt2oW/vz9FRUUt8hlPewZgjEkDDtVbtsUYs62B1acA840xFcaYXcB2YGTdFaT2WzgfWOBYNA+4vBmxt6nUzFxG9uxIx2A/fjsxkZjQAB76IIPqGrvVoXmkN1bt5vnUbfh5e7E8q8DqcJSHqtsMdLz5xxjDQw89xODBg7ngggvYt28feXl5Tdrftm3byMjIYMKECSQlJfHkk0+Sk5MDwODBg7nuuuv473//i49Py1zC1dIXgnUFvq3zPMexrK5IoMgYU32KdU4QkZnATIDu3bu3XKRnYGdBCdn5Jfz8rP4AhPj78Oil/fn1m+uY+81ufjGmlyVxeaoP1ufwfwszuaBfDKN7R/LEJ5vZXVhKXFSw1aEpi5zql3pruvzyy7n33ntZt24dZWVlDBs2jLlz51JQUMDatWvx9fUlLi7upLH5Pj4+2O0//ng8/roxhgEDBrBq1aqT3uvTTz8lLS2Njz76iCeeeILMzEynE0FLdwI3dI5Tf8xkU9b58QVjZhljko0xyTbbSdNZt4nUzNrsPXFApxPLJg/sxPl9o/nr0iz2FZVZEpcnWpKZy+/+t5Gze0fy958P5YJ+0QB6FqAsERISwrhx47jllltOdP4WFxcTHR2Nr68vX375JXv2nDwTc48ePdi8eTMVFRUUFxezbNkyABITEykoKDiRAKqqqsjMzMRut7N3717OO+88nnvuOYqKiigpKXE6/pZOADlAtzrPY4H99dYpBCJExOcU67QrqZm5DI4Np2tE4IllIsIfLxuA3Rj++FGmhdF5jq+3F3LHW+sZ1DWcWTcmE+DrTY/IYOIigzQBKMtMmzaNDRs2nOiYve6660hPTyc5OZk333yTvn37nrRNt27duPrqq0806wwdOhQAPz8/FixYwP3338+QIUNISkrim2++oaamhuuvv55BgwYxdOhQ7rnnHiIiIpyOvaWbgD4C3hKRv1LbCRwPrKm7gjHGiMiXwJXAfGA6cHI3eTuRW1zO93uLuG9S4kmvdesYxN0XJPDMZ1tZujmPCf1jLIjQM6z74TC3vpFOz6hg5t48ghD/H//rpiTYeDc9h/KqGgJ8vS2MUnmiqVOn/uTi0KioqAabcICf/Gp/7rnneO65505aJykpibS0tJOWr1y5sgWi/ammDAN9G1gFJIpIjojMEJGpIpIDjAY+FZFUAGNMJvAusBlYDNx+fASQiCwSkS6O3d4P3Csi26ntE5jd0h+spSzZnAvApAENH9xnnNuTxJhQHl2YQWlFdYPrKOdsOXCEm+aswRbqz39mjCQi6KejhlMSbZRV1ZC++7BFESrlmpoyCmiaMaazMcbXGBNrjJltjPnA8djfGBNjjJlUZ/2njDG9jTGJxpjP6iy/yBiz3/F4pzFmpDGmjzHmKmNMRet8POelZubSyxZMn+jQBl/39fbi6SsGsr+4nBc/z2rj6NzfrsJSbpi9hiA/H/474yyiwwJOWmdUr0jHaKB8CyJUynXplcCnUHSskm93HmJSnc7fhgzv0ZFpI7sx5+vdLT4W2ZPtLyrj+tdWYzeG//5iJN06BjW4XpCfDyN6dtB+AA+k83L91Jl+H5oATmHZlnxq7Oa0CQDg/sl9iQj05eEPN2G3639KZx0sqeD62as5UlbFG7eMbPQM7LiUBBtZeSUcKNYRWZ4iICCAgwcPahJwOF4PICDg5LPkxmhBmFNIzcylU1gAg7uGn3bdiCA/Hr64H/e+u4G31vzA9aN6tEGE7qm4rIob56xhf1EZb9xyFgOb8P2nJETz9KKtpGUVcM0Ia64XUW0rNjaWnJwcCgr0zO+44xXBmkoTQCPKKmtIyy7g6uRueHk1bY7tqUO7smBtDs8u3sqkAZ2whfq3cpTup6yyhhlzvyMr7yj/vjGZkT07Nmm7hJgQOoUFsFwTgMfw9fVtcuUr1TBtAmrE8qwCyqvsTWr+OU5EeOLygVRU2Xny082tGJ17qqy288v/rmXdD4d58ZqhjEuMbvK2IkJKgo0V2YU6PYdSTaQJoBFLMnMJD/Rt8i/Q43rbQvjVuN4s/H4/K7L11LSpauyGu99ZT1pWAc9cMZiLB3c+432kJNo4Wl7N93tbZqIspdydJoAGVNXY+XxLHuP7RePrfeZf0W3jetMzKpg/fJhBeVX9iVBVfXa74cH3N7JoUy6PXNyPq0d0O/1GDTinTxTeXqKjgZRqIk0ADVi98xBHyqvPqPmnrgBfb56YMpDdB4/xylc7Wjg692KM4clPt/Bueg6/GR/v1MR64YG+DO0WoQlAqSbSBNCA1MxcAny9GBvf/Mnnzo2PYkpSF/751Q52FDg/aZO7emnZduZ8vYubz4njngvind5fSoKNjTnFFJa022sLlWo3NAHUY7cblmzOJSXBRqCfc/PKPHJxfwJ8vXj4g006VrkBc1bu4oXPs7hyeCx/uLh/kwpmnE5KYm3SXpld6PS+lHJ3mgDq2ZBTRN6RimY3/9RlC/Xn/gv78u3OQ3ywfl8LROc+3k3fy+OfbObCgZ145opBTR5qezoDu4TTMdiPNG0GUuq0NAHUk5qZh4+XML5vy8zsOW1Ed4Z2j+CpT7dQdKyyRfbp6j7bdIAH3tvImPgoXrw2CZ9mdLQ3xstLGBMfRVp2gV6RrdRpaAKowxjDksxcRvWKJDzIt0X26eUlPD11EEVlVTzzmRaSX55VwG/mr2do9w7864bh+Pu0/PTNKQk2Cksq2XxA52VS6lQ0AdSxPb+EnYWljU793Fz9Oocx49yezP9uL9/tPnT6DdzUd7sP8cv/pBMfHcqcm0YQ5Nc6F6KPcXTe62ggpU5NE0AdqZm1c/9P6O98+399d18QT9eIQB7+YBNVHnilasa+Ym55/Tu6hAfyxoyRhAe2zBlWQ2yh/gzsGsbybZoAlDoVTQB1pGbmkdQtgk7hTZ9Nr6mC/Hz442UDyMor4bUVu1p8/+3Z9vwSps9ZQ1igL//9xVlEhbT+HEkpCTbW/nCYI+VVrf5eSrkqTQAO+4rK2LSvuEVG/zTmgv4xTOwfw9+WZbH30LFWe5/2JOfwMW6YvRoR+M+MkXSpU1e5NaUkRFNjN3yzXYeDKtWYppSEnCMi+SKSUWdZRxFZKiLZjvsOjuX3icj3jluGiNSIyEmT6YjIXBHZVWfdpJb9WGduSeapSz+2lMcuG4C3CP+3MMPtrw0oOFrB9a+tprSimjduOYtetpA2e++h3SMI9ffRfgClTqEpZwBzgcn1lj0ALDPGxAPLHM8xxjxvjEkyxiQBDwLLjTGN9Xred3xdY8z3zQu/5aRm5hIfHdLqB6kuEYHcMyGBL7cVsDgjt1Xfy0rFx6q4YfZq8o5U8PrNI+nfJaxN39/X24tz+kSxfFuB2ydapZqrKTWB04D6B/EpwDzH43nA5Q1sOg1426no2sih0krW7Dp96ceWctPZcfTvHMZjH2dy1A3bqEsrqrlp7hp2FpQy68bhDO/RwZI4xibY2F9crlNxKNWI5vYBxBhjDgA47n8ycbuIBFF71vDeKfbxlIhsFJEXRKTRXkERmSki6SKS3lqVfz7fkofdwOSBbZMAfLy9ePqKQeQfreAvS9yrkHx5VQ0z/5POxpxiXpo29MSQTCuMTYgC4CsdDaRUg1qrE/hS4OtTNP88CPQFRgAdgfsb25ExZpYxJtkYk2yztc7BZElmLl0jAhnQhs0USd0iuP6sHryxajebcorb7H1bU3WNnd+8vZ6vtx/kuZ8NbrOE2pjYDkH0iQ7RfgClGtHcBJAnIp0BHPf59V6/llM0/xhjDphaFcDrwMhmxuG00opq0rILmTggpkUmIzsT901OJDLEn4c/3ESNi09bYLcbfr9gI0s25/HYpf352fCm1yVtTSkJNlbvOkRZpdZlUKq+5iaAj4DpjsfTgYXHXxCRcCCl7rL66iQPobb/IKOxdVvb8qwCKqvPrPRjSwkL8OUPl/RnY04x/1m1u83fv6UYY/jjx5m8v34fv52QwE3ntJ86rSkJNiqr7Xy766DVoSjV7jRlGOjbwCogUURyRGQG8AwwQUSygQmO58dNBZYYY0rr7WeRiHRxPH1TRDYBm4Ao4EnnP0rzpGbm0jHYjxFxZ1b6saVcOrgzY+Kj+POSLPKOlFsSg7P+ujSLeav2MHNsL+44v4/V4fzEyJ4dCfD10quClWrAaSdjMcZMa+Sl8Y2sP5faoaP1l19U5/H5TQuvdVVW2/liaz4XDuyEdwtNR3ymRIQnLx/IxBfSePzjzfzjumGWxNFcs9J28PIX27l2RDcevLBvmzejnU6ArzejekXq9NBKNcCjrwRetfMgR50o/dhSekQGc+f5ffh00wG+3Fa/O6X9envNDzy9aCuXDO7MU1MHtbuD/3EpCTZ2FpZ6zNXXSjWVRyeAxRm5BPt5c06fKKtD4daxvehtqy0k3947LAuOVvDc4q089MEmzku08derkyw7g2qKlASdHVSphnhsAqixG5ZuzmNcYjQBvi0/J/2Z8vfx5qmpg8g5XMbLX2RbHU6DdhSU8OD7Gznn2S94dfkOLhnchVeuG46fT/v+b9QzKphuHQM1AShVT+tMyO4C1v9wmMKSCia28tw/Z2JUr0iuHB7LrLSdXD60KwkxoVaHBED67kP8c/lOPt+Sh7+PF1cNj2XGuT3bdG4fZ4gIY+NtfLh+H5XV9nafsJRqKx77l5CamYuvt3Be3+jTr9yGHrqoHyEBPjz8wSZLSxrW2A2LMw5wxStfc+U/V7F2zyF+Mz6erx84n6emDnKZg/9xKQk2SitrWLvnsNWhKNVueOQZgDGG1Mw8zu4dRVhA6xUmaY6OwX48dGE/fv/eRhaszeHqEd3a9P3Lq2pYsDaH2St3sauwlO4dg3h8ygCuHB7bahW82sLZfaLw8RKWZxUwunek1eEo1S647l+0E7bmHuWHQ8f4VUpvq0Np0FXJsSxYm8PTn21hfL9oItuggMqh0kr+s2oPb6zazcHSSobEhvOPnw9jsoVDZFtSiL8PyXEdWJ5VwAMX9rU6HKXaBY9sAkrNzEUEJvRvP+3/dYkIT00dSEl5NU8vat1C8nsOlvKHDzM4+5llvPB5FkndInhn5ig+vP0cLh7c2S0O/selJESz5cARl73gTqmW5pFnAKmZeQzv3gFbaOv/sm6u+JhQZo7txStf7eDK4bEt3mzx/d4iZqXtYHFGLj5eXlw+tAu3julFfDvpeG4NKQk2nl28lbSsAq5KbtumNaXaI49LAHsPHWPLgSM8fFE/q0M5rTvPj+fjjft5+MNNfHbXGPx9nBuuarcbvtiaz6wVO1mz6xChAT78MqU3N58dR3RYy9dBbm/6dQ7FFurPck0ASgEemABST5R+tPbq36YI9PPmiSkDuen175i1fCd3jo9v1n4qqmv4cP0+/r1iF9vzS+gSHsAjF/fj2pHdCfH3nP8CIkJKgo3Pt+RRYzdu1bylVHN4zl+/Q2pmLn07hdI9MsjqUJpkXGI0Fw/qzMtfbufSIV2Iiwpu8rbFx6r47+o9zP1mNwVHK+jXOYwXr0ni4sGd8fX2yO4fUhJsLFibw8acIoZ2t6ZSmVLthUclgIKjFaTvOcxvzm/eL2mr/N+l/UnLKuAPCzN445aRp51zJ+fwMWav3MU73+3lWGUNY+KjeOHqJM7pE9lu5+tpK+f2iUKkdloITQDK03lUAvh8Sx7GuEbzT10xYQH8blIij36UyccbD3DZkC4Nrpexr5hZaTv5dNMBBLh0SG3HblsXZG/POgT7MSQ2guVZBdx9QYLV4ShlKY9KAKmZuXTrGEi/zq430uX6UT14b10Oj3+8mZQEG+GBtRewGWNIyy5kVtoOvt5+kBB/H245J46bz+lJl4hAi6Nun1ISbLz8RTaHSyvpEOxndThKWcZjGoKPllfxzfaDTOrfySWbQby9hKenDuJQaQXPp26lstrOe2tzuPBvK5g+Zw3b80t44MK+fP3A+Tx8cX89+J9CSqINu4GV2wutDkUpS532DEBE5gCXAPnGmIGOZR2Bd4A4YDdwtTHmsIiMo7YU5C7H5u8bYx5vYJ89gfnUFoRfB9xgjKl09sOcypfbCqissTPJ4kLlzhjYNZzpZ8cx95vdLN2cR96RChJiQnj+ysFMSeqqk5w10ZDYCMIDfVmeVcCljTSnKeUJmnLEmAtMrrfsAWCZMSYeWOZ4ftwKY0yS43bSwd/hWeAFx/aHgRlnFvaZS83MJSrEj2Eu3vH324mJJESH0jMqmNdvGkHq3WO5KrmbHvzPgLeXMCY+iuVZBRhj3YR7SlnttEcNY0wacKje4inAPMfjedQWdm8SRyH484EFzdm+Ocqravhqaz4T+rv+vDYh/j6k3jOW+TNHc17faJdszmoPUhJsFBytYMuBo1aHopRlmvuzMcYYcwDAcV93TuXRIrJBRD4TkQENbBsJFBljqh3Pc4Cujb2RiMwUkXQRSS8oaF5Bj292FFJaWcOkdjT3v7LW8SphadlaJEZ5rpZuN1gH9DDGDAFeBj5sYJ2GfrI2eh5ujJlljEk2xiTbbLZmBZWakUeovw9n97a+9KNqH6LDAujXOYzl2zQBKM/V3ASQJyKdARz3+QDGmCPGmBLH40WAr4jUP+oWAhEicrwDOhbY38w4TqvGbvh8Sx7n9Y3WdnL1EykJNtL3HKKkovr0Kyvlhpp7RPwImO54PJ3akT+ISCdHGz8iMtKx/4N1NzS1vW5fAlfW3741pO8+xMHSSpe7+Eu1vrEJUVTVGFbtOHj6lZVyQ6dNACLyNrAKSBSRHBGZATwDTBCRbGCC4znUHtQzRGQD8BJwreOAj4gsEpHjY+7uB+4Vke3U9gnMbskPVVdqZh5+Pl6MS2xe85FyX8k9OhLk583yrHyrQ1HKEqe9DsAYM62Rl8Y3sO7fgb83sp+L6jzeCYxsYozNVlv6MZcxfaII9qBZL1XT+Pl4cXbvKL7aVjscVEdUKU/j1o3imfuPsK+oTJt/VKNSEm3kHC5jV2Gp1aEo1ebcOgEsyczFS2B8v+jTr6w8Ukp8bdPg8iwdDaQ8j1sngNTMPEbEdWyTourKNXWPDKJXVLAmAOWR3DYB7C4sZVveUW3+Uac1NsHGtzsPUl5VY3UoSrUpt00Ax0s/TtSrf9VppCTaKK+y893u+jOeKOXe3DoBDOwaRmwH1yj9qKwzqmckfj5eelWw8jhumQDyjpSz7ociJvXX5h91eoF+3pzVs6P2AyiP45YJYMnmPACXnvtfta2UBBvZ+SXsKyqzOhSl2ox7JoDMXHpGBRMfHWJ1KMpFnJgdVM8ClAdxuwRQfKyKVTsOMnFAjF7ZqZqsT3QIXcIDtB9AeRS3SwBfbMuj2m50+Kc6IyJCSqKNr7cXUlVjtzocpdqE2yWA1Iw8okP9SYqNsDoU5WJSEmwcrajm+71FVoeiVJtwqwRQXlXD8qwCJg6IwcvFSz+qtnd2nyi8vUSbgZTHcKsEkJZVQFlVjTb/qGYJC/BlePcOOhxUeQy3SgCpmXmEBfgwqlek1aEoF5WSaGPTvmIKSyqsDkWpVuc2CaC6xs6yrXmM7xeDr7fbfCzVxsY6ZgddocXilQdwmyPlml2HKDpWxSSd+0c5YUCXMCKD/bQfQHmEppSEnCMi+SKSUWdZRxFZKiLZjvsOjuXXichGx+0bERnSyD7nisguEfnecUty9oOkZuYS4OvF2AQt/aiaz8tLGJtgIy27ELvdWB2OUq2qKWcAc4HJ9ZY9ACwzxsQDyxzPAXYBKcaYwcATwKxT7Pc+Y0yS4/b9mYX9U8YYlmzOY2y8jSA/Lf2onJOSYONQaSUZ+4utDkWpVnXaBGCMSQPqz5M7BZjneDwPuNyx7jfGmMOO5d8CsS0U5yltzCnmQHG5jv5RLWJMfBQiaDOQcnvN7QOIMcYcAHDcN1RzcQbw2Sn28ZSjqegFEWm0ZJeIzBSRdBFJLyho+A8yNTMXby/R0o+qRUSG+DOoazhp2hGs3FyrdAKLyHnUJoD7G1nlQaAvMALoeIr1MMbMMsYkG2OSbbaG2/dTM3MZ1asjEUF+zgWulENKgo11PxRRXFZldShKtZrmJoA8EekM4LjPP/6CiAwGXgOmGGMONrSxMeaAqVUBvA6MbGYcbM8vYUdBqTb/qBaVkmCjxm74Znuh1aEo1WqamwA+AqY7Hk8HFgKISHfgfeAGY0xWYxvXSR5Cbf9BRmPrns6J0o9a/EW1oKRuEYQG+OhVwcqtNWUY6NvAKiBRRHJEZAbwDDBBRLKBCY7nAP8HRAKvOIZ3ptfZzyIR6eJ4+qaIbAI2AVHAk839AEsycxnSLYJO4QHN3YVSJ/Hx9mJMfBTLswowRoeDKvd02jGTxphpjbw0voF1fwH8opH9XFTn8flNDfBUDhSXsSGnmN9PTmyJ3Sn1E2PjbSzalEt2fgkJMaFWh6NUi3PpK4GXZDpKP2r7v2oFxy8q1OGgyl25dAJIzcylT3QIvW1a+lG1vC4RgSTEhGg/gHJbLpsADpdWsnrXIZ37R7WqlAQba3Yd4lhltdWhKNXiXDYBLNuaT42WflStLCUhmsoaO6t31r8YXinX57IJIDUzly7hAQzqGm51KMqNJcd1INDXW5uBlFtyyQRwrLKatKwCJg7oRO2lBEq1jgBfb0b3jtQEoNySSyaAtKwCKqrtTNT2f9UGUhJs7CosZc/BUqtDUapFuWQCSM3Mo0OQLyPjOlodivIAKY7hoGl6FqDcjMslgMpqO8u21JZ+9NHSj6oNxEUF071jkDYDKbfjckfQb3ce5Eh5tY7+UW0qJcHGNzsOUlFdY3UoSrUYl0sAqZm5BPl5MyY+yupQlAdJSbBxrLKGtbsPn35lpVyEyyWApZvzSEmwEeDrbXUoyoOM7h2Jr7ewXIvEKDfiUgngWGUN+UcrtPlHtblgfx9GxHXUeYGUW3GpBHCkrAofL+G8vlr6UbW9lAQbW3OPknek3OpQlGoRLpUAisuqGN07kvBAX6tDUR4oJdExO6iOBlJuwqUSQGWNXZt/lGUSY0KJCfPXBKDcRpMSgIjMEZF8Ecmos6yjiCwVkWzHfQfHchGRl0Rku4hsFJFhjexzuIhscqz3kjRxToeJ/fXqX2UNESElwcbK7EKqa+xWh6OU05p6BjAXmFxv2QPAMmNMPLDM8RzgQiDecZsJvNrIPl91vH583fr7P0mQnzfRYVr6UVknJSGa4rIqNuQUWx2KUk5rUgIwxqQB9efDnQLMczyeR21x9+PL3zC1vgUijheBP87xPMwYs8rUFlx9o872jYrQtn9lsXP7ROEl2g+g3IMzfQAxxpgDAI7740NzugJ766yX41hWV1fH8lOtA4CIzBSRdBFJt5cdcSJcpZwXHuRLUrcITQDKLbRGJ3BDbfmmGevULjRmljEm2RiTbLPZnA5OKWelJESzMaeIw6WVVoeilFOcSQB5x5t2HPf5juU5QLc668UC++ttm+NYfqp1lGqXUhJtGAMrthdaHYpSTnEmAXwETHc8ng4srLP8RsdooFFA8fGmouMcz4+KyCjH6J8b62yvVLs2qGs4HYJ89apg5fKaOgz0bWAVkCgiOSIyA3gGmCAi2cAEx3OARcBOYDvwb+C2Ovv5vs5ufw285lhvB/CZcx9Fqbbh7SWMibexPKsAu73BlkulXIJPU1Yyxkxr5KXxDaxrgNsb2U9SncfpwMCmvL9S7U1Kgo2PNuxnS+4RBnTRutTKNbnUlcBKtRdjEmqnI9fRQMqVaQJQqhmiQwMY0CVM+wGUS9MEoFQzjU2wsXbPYY6WV1kdilLNoglAqWZKSbBRbTd8s+Og1aEo1SyaAJRqpmHdOxDi70Oa9gMoF6UJQKlm8vPx4uzekSzPKqB28JtSrkUTgFJOSEm0kTWH2r8AABS1SURBVHO4jJ2FpVaHotQZ0wSglBPGxjuqhOloIOWCNAEo5YRuHYPobQvW6wGUS9IEoJSTzkuM5psdhWTs0yIxyrVoAlDKSb8e15vIYH9uf2sdR/SaAOVCNAEo5aTIEH/+/vOh7Dtcxn3/26AjgpTL0ASgVAtIjuvIAxf2JTUzj9krd1kdjlJNoglAqRYy49yeTB7QiT99tpX03fVLaCvV/mgCUKqFiAjPXTWY2A6B3PHWegpLKqwOSalT0gSgVAsKC/DlleuGcfhYJXfP/54aLRij2jFNAEq1sAFdwnl8ygBWbi/kb8uyrQ5HqUY5lQBE5C4RyRCRTBG527HsHRH53nHbXa8MZN1td4vIJsd66c7EoVR7c3VyN64cHsvLX2TrRWKq3Wp2AhCRgcCtwEhgCHCJiMQbY64xxiQ5yj++B7x/it2c51g3ublxKNUeiQhPTBlIYkwod89fz/6iMqtDUuokzpwB9AO+NcYcM8ZUA8uBqcdfFBEBrgbedi5EpVxToJ83r1w3jKoaw+1vraOy2m51SEr9hDMJIAMYKyKRIhIEXAR0q/P6GCDPGNNYI6gBlojIWhGZ2dibiMhMEUkXkfSCAj2VVq6lly2EZ382mPU/FPHMZ1utDkepn/Bp7obGmC0i8iywFCgBNgDVdVaZxql//Z9jjNkvItHAUhHZaoxJa+B9ZgGzAJKTk3VIhXI5Fw/uzHe745jz9S6S4zpw0aDOVoekFOBkJ7AxZrYxZpgxZixwCMgGEBEf4ArgnVNsu99xnw98QG1fglJu6aGL+pHULYLfL9jIzoISq8NRCnB+FFC04747tQf847/4LwC2GmNyGtkuWERCjz8GJlLbpKSUW/Lz8eIf1w3D11u47c11lFXWWB2SUk5fB/CeiGwGPgZuN8Ycdiy/lnrNPyLSRUQWOZ7GACtFZAOwBvjUGLPYyViUate6RgTywjVJbMs7yv8t1N87ynrN7gMAMMaMaWT5TQ0s209tRzHGmJ3UDh1VyqOMS4zmzvP68NIX2xkR15GrR3Q7/UZKtRK9ElipNnbXBQmc0yeSPyzMYPP+I1aHozyYJgCl2pi3l/C3a4cSEeTLbW+u1SIyyjKaAJSyQFSIP3//+TD2Hi7j9//bqEVklCU0AShlkRFxHbl/ciKLM3OZ8/Vuq8NRHkgTgFIWunVMLyb2j+FPi7awdo8WkVFtSxOAUhYSEZ6/aghdIgK5/c31HNQiMqoNaQJQymLhgbVFZA4dq+Tud7SIjGo7mgCUagcGdg3nj5cNYEV2IS9/oUVkVNvQBKBUO3HtiG5cMawrf1uWzYpsnflWtT5NAEq1EyLCk5cPJD46hLvmf8+BYi0io1qXJgCl2pEgPx9evX44FVU13PHWeqpqtIiMaj2aAJRqZ3rbQnjmZ4NZu+cwz2oRGdWKNAEo1Q5dOqQL00f34LWVu1icccDqcJSb0gSgVDv10MX9GNItgvv+t5HdhaVWh6PckCYApdopfx9v/vHzoXh5Cb9+cx3lVVpERrUsTQBKtWOxHYJ48Zokthw4wqMLM60OR7kZZ0tC3iUiGSKSKSJ3O5Y9JiL7ROR7x+2iRradLCLbRGS7iDzgTBxKubPz+kZzx3l9eCd9L/9L32t1OMqNNDsBiMhA4FZqi7kPAS4RkXjHyy8YY5Ict0UNbOsN/AO4EOgPTBOR/s2NRSl3d8+EBEb3qi0is+WAFpFRLcOZM4B+wLfGmGPGmGpgOTC1iduOBLYbY3YaYyqB+cAUJ2JRyq15ewl/m5ZEWIAvt725jqNaREa1AGcSQAYwVkQiRSSI2nq/xwuc3iEiG0Vkjoh0aGDbrkDdc9kcx7KTiMhMEUkXkfSCAr08Xnmu6NAAXp42lB8OHeP+97SIjHJesxOAMWYL8CywFFgMbACqgVeB3kAScAD4SwObS0O7bOR9Zhljko0xyTabrbnhKuUWzuoVyX2TElm0KZe53+y2Ohzl4pzqBDbGzDbGDDPGjAUOAdnGmDxjTI0xxg78m9rmnvpy+PFsASAW2O9MLEp5ipljenFBvxie+nQLa/cctjoc5cKcHQUU7bjvDlwBvC0ineusMpXapqL6vgPiRaSniPgB1wIfOROLUp7Cy0v4y1VD6BQewB1vreNQaaXVISkX5ex1AO+JyGbgY+B2Y8xh4DkR2SQiG4HzgHsARKSLiCwCcHQa3wGkAluAd40xOshZqSYKD/Ll1euGc7CktoiMXYvIqGYQV+pISk5ONunp6VaHoVS78ebqPTz8QQb3TkjgN+PjT7+B8kgistYYk1x/uV4JrJQL+/nI7lye1IUXPs9iZXah1eEoF6MJQCkXJiI8NXUQfWwh3DV/vRaRUWdEE4BSLi7Y34dXrx9GeVUN1876lr2HjlkdknIRmgCUcgN9okP5zy/O4nBpJVf9cxXb80usDsljGWPIzjvK7JW7eG3FTo5VVlsdUqO0E1gpN7LlwBFumL0aY2DeLSMZ2DXc6pA8wqHSSlZuL2RFVgErsgvJPVJ+4rWYMH/um9SXK4Z2xcuroWtgW19jncCaAJRyMzsLSrj+tdUcrahm7s0jGN6jo9UhuZ3Kajtr9xxmRXbtAT9jfzHGQHigL+f2iWJMfBTnxkeRd6Scxz/Zwoa9RQzsGsYjF/dnVK/INo9XE4BSHmRfURnXv7aa3OJy/n1jMufGR1kdkkszxrCzsPTEL/xVOw9yrLIGHy9hWPcOjImPYkyCjUFdw/Gu9yvfbjd8vHE/z362lf3F5UwaEMMDF/ajZ1Rwm8WvCUApD1NwtIIbZq9mZ0EpL/98KJMGdLI6JJdSdKySr7cfPPErf19R7QiruMggxsTbGBMfxejekYQG+DZpf+VVNcxeuYtXvtxOZY2dG0fH8Zvz4wkPatr2ztAEoJQHKjpWyU2vf8emfcX8+arBTB0aa3VI7VZVjZ31PxSxIruAtOxCNuYUYQyEBvhwTu8oxiREMaaPje6RQU69T/7Rcl5YmsU73+0lLNCXu8bHc/2oHvh6t96YHE0ASnmokopqbp2Xzre7DvL4lIHcMKqH1SG1C8YY9hw8duKAv2rHQUoqqvESSOoWwdgEG2PibQyJDcenFQ7OWw4c4alPt7ByeyG9ooJ58KJ+XNAvGpGW7yjWBKCUByuvquH2N9exbGs+90/uy6/H9bY6JEsUl1WxakchadmFrMguYO+h2mad2A6BjE2wMTY+itG9owgPbP1mGahNQl9tK+DJTzezo6CU0b0ieeSSfgzo0rKjtzQBKOXhqmrs3PvuBj7esJ/bz+vN7yYmtsqvzfakusbOhpziE+343+8tosZuCPH3YXTvSMbGRzEm3kaPyCBLv4uqGjtvr/mBF5ZmUVRWxVXDY/ntxERiwgJaZP+aAJRS1NgNj3y4ibfX7GX66B48eukAy8amt5aqGjsfrN/HF1vy+XpHIUfLqxGBwbERpDhG6yR1i2jVNvfmKi6r4h9fbuf1r3fh6+3Fr1J6c+uYXgT6eTu1X00ASimgttnh6UVb+PeKXVwxrCvP/Wxwq7RxW2HtnkM8/EEGW3OP0iU84EQ7/jl9IokI8rM6vCbbc7CUZxdvZdGmXDqFBfD7yYlcntT8C8k0ASilTjDG8PIX2/nr0iwmD+jE36Yl4e/j3K9MKx0ureTZxVuZ/91euoQH8OhlA5jYP8blm7i+232IJz7ZzMacYgZ1DeeRi/txVjMuJNMEoJQ6yZyVu3j8k82MiY/iXzcMJ8jPx+qQzogxhgVrc/jTZ1spLqtixrk9uWt8PMH+rvU5TsVuNyzcsI/nFm/jQHE5kwd04oEL+xJ3BheStUoCEJG7gFupLfL+b2PMiyLyPHApUAnsAG42xhQ1sO1u4ChQA1Q3FFx9mgCUannvfreXB97fyLDuHZhz8wjCmnhhk9Wy8o7yyAcZrNl9iOQeHXhy6kD6dgqzOqxWU1ZZw2srdvLq8h1U1diZPjqOO8fHN2nEUosnABEZCMyntuh7JbAY+DXQE/jCGFMtIs8CGGPub2D73UCyMabJVSw0ASjVOj7deIC731lPYqdQ5t08ksgQf6tDatSxympeWrad11bsJCTAhwcv7MtVw7u5XWd2Y/KPlPOXJVm8u3YvEYG+3H1BAj8/q/spO7VboyJYP+BbY8wxR43f5cBUY8wSx3OAbwG99FCpdu7iwZ2ZdWMy2XklXDPrW3KLy0+/kQU+35zHhL+m8c/lO7hiWFe++O04rhnR3WMO/gDRYQE8e+VgPrnzXPp1DuPRjzKZ9GIay7bkcaY/6J1JABnAWBGJFJEg4CKgW711bgE+a2R7AywRkbUiMtOJOJRSLeC8xGjm3TKS3OJyrvrXN/xwsP0UltlXVMbMN9L5xRvpBPt7879fjea5K4fQMdh1Rva0tAFdwnnzF2fx2o3JYGDGvHSun72azfuPNHkfzvYBzABuB0qAzUCZMeYex2sPA8nAFaaBNxGRLsaY/SISDSwF7jTGpDWw3kxgJkD37t2H79mzp9nxKqVOb8PeIqa/vgY/by/e/MVZxMeEWhZLVY2dOSt38eLn2QDcdUE8M87t2S7H8FupqsbOm9/u4cVl2RSXVXH18G78dmIC0Y4LyVp9FJCIPA3kGGNeEZHpwK+A8caY0/6MEJHHgBJjzJ9PtZ72ASjVNrblHuX62auprrHzxi1nMSi27QvLpO+uHdO/Le8oE/rH8Oil/Ynt4NxEbO6u+FgVL3+RzbxVu/H19uLXKb25dWwvAv18WmUUULQxJl9EugNLgNHAWcBfgRRjTEEj2wUDXsaYo47HS4HHjTGLT/V+mgCUajt7DpZy3WurKT5WxeybRjCyZ9sUljlUWskzn23h3fQcukYE8thlA5jQP6ZN3ttd7C4s5ZnPtrI4M5cu4QGseuiCFu8EBnhPRDYDHwO3G2MOA38HQoGlIvK9iPwTapt8RGSRY7sYYKWIbADWAJ+e7uCvlGpbPSKD+d+vRhMd5s+Nc1bz1bb8Vn0/u93w7nd7Gf+Xr3h/3T5+mdKLpfeO1YN/M8RFBfPPG4bzzsxRRIU2PqJLLwRTSp1SYUkFN85eQ3b+UV66digXDurc4u+xNfcIj3yQQfqew4yI68CTlw8isZN1fQ/uxBiDl5dXq5wBKKXcXFSIP2/PHMXg2Ahuf2sdC9bmtNi+j1VW86dFW7jkpZXsKCjhuSsH887M0Xrwb0Gnmg7Dfa6XVkq1mvBAX/4zYyS//M9afve/DZSUV3HTOT2d2ueSzFwe+yiT/cXlXDuiG/dP7ksHDx7WaQVNAEqpJgny8+G16cnc+dZ6Hvt4M6WVNdw2rvcZT7iWc/gYj32Uyedb8kmMCWXBtKEkx7VNB7P6KU0ASqkm8/fx5pXrhvH7BRt5PnUbR8qreGBy3yYlgaoaO6+t2MVLy7IRgYcu6svN5+iYfitpAlBKnREfby/+fNUQgv19+NfynZSUV/PElIGnnI5h9c6DPPJhBtn5JUzsH8Ojlw2ga0RgG0atGqIJQCl1xry8hMenDCAkwIdXv9pBaUU1z1815KRf8wdLKvjTZ1tZsLZ2TP9rNyZzgQ7rbDc0ASilmkVEuH9yX0IDfHhu8TZKK2t4edpQAny9a8f0p+/lmcVbKSmv5tfjenPn+X1crt6Au9N/DaWUU24b14dQfx/+sDCTGfO+494JiTz16WbW/VDEyJ4defLygSRYOJ+QapwmAKWU024YHUeQnw/3LdjAz7Z/Q8dgP/581RB+Nqyry5dldGeaAJRSLeJnw2PpEOzL6l2H+HVKb5cqwu6pNAEopVrM+X1jOL+vdvK6Ch2Aq5RSHkoTgFJKeShNAEop5aE0ASillIfSBKCUUh5KE4BSSnkoTQBKKeWhNAEopZSHcqmawCJSAOyxOIwooNDiGNoL/S5+pN/Fj/S7+FF7+S56GGNs9Re6VAJoD0QkvaHiyp5Iv4sf6XfxI/0uftTevwttAlJKKQ+lCUAppTyUJoAzN8vqANoR/S5+pN/Fj/S7+FG7/i60D0AppTyUngEopZSH0gSglFIeShNAE4lINxH5UkS2iEimiNxldUxWExFvEVkvIp9YHYuVRCRCRBaIyFbH/4/RVsdkFRG5x/H3kSEib4tIgNUxtRURmSMi+SKSUWdZRxFZKiLZjvsOVsZYnyaApqsGfmuM6QeMAm4Xkf4Wx2S1u4AtVgfRDvwNWGyM6QsMwUO/ExHpCvwGSDbGDAS8gWutjapNzQUm11v2ALDMGBMPLHM8bzc0ATSRMeaAMWad4/FRav/Iu1oblXVEJBa4GHjN6lisJCJhwFhgNoAxptIYU2RtVJbyAQJFxAcIAvZbHE+bMcakAYfqLZ4CzHM8ngdc3qZBnYYmgGYQkThgKLDa2kgs9SLwe8BudSAW6wUUAK87msNeE5Fgq4OygjFmH/Bn4AfgAFBsjFlibVSWizHGHIDaH5FAtMXx/IQmgDMkIiHAe8DdxpgjVsdjBRG5BMg3xqy1OpZ2wAcYBrxqjBkKlNLOTvPbiqN9ewrQE+gCBIvI9dZGpU5FE8AZEBFfag/+bxpj3rc6HgudA1wmIruB+cD5IvJfa0OyTA6QY4w5fja4gNqE4IkuAHYZYwqMMVXA+8DZFsdktTwR6QzguM+3OJ6f0ATQRCIi1LbzbjHG/NXqeKxkjHnQGBNrjImjtpPvC2OMR/7SM8bkAntFJNGxaDyw2cKQrPQDMEpEghx/L+Px0A7xOj4CpjseTwcWWhjLSXysDsCFnAPcAGwSke8dyx4yxiyyMCbVPtwJvCkifsBO4GaL47GEMWa1iCwA1lE7am497XwqhJYkIm8D44AoEckBHgWeAd4VkRnUJsirrIvwZDoVhFJKeShtAlJKKQ+lCUAppTyUJgCllPJQmgCUUspDaQJQSikPpQlAKSc5ZgO9zeo4lDpTmgCUcl4EoAlAuRxNAEo57xmgt4h8LyLPWx2MUk2lF4Ip5STH7LCfOObAV8pl6BmAUkp5KE0ASinloTQBKOW8o0Co1UEodaY0ASjlJGPMQeBrRyF07QRWLkM7gZVSykPpGYBSSnkoTQBKKeWhNAEopZSH0gSglFIeShOAUkp5KE0ASinloTQBKKWUh/p/oNiPGluF/DAAAAAASUVORK5CYII=\n", "text/plain": [ "
" ] }, "metadata": { "needs_background": "light" }, "output_type": "display_data" } ], "source": [ "df.plot.line(y='Values', x='t')" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "You can see the available plot types in `pandas` by doing `df.plot.` and then pressing tab. Below is just my version that allows that to stay in the completed notebook:" ] }, { "cell_type": "code", "execution_count": 12, "metadata": {}, "outputs": [ { "data": { "text/plain": [ "['area',\n", " 'bar',\n", " 'barh',\n", " 'box',\n", " 'density',\n", " 'hexbin',\n", " 'hist',\n", " 'kde',\n", " 'line',\n", " 'pie',\n", " 'scatter']" ] }, "execution_count": 12, "metadata": {}, "output_type": "execute_result" } ], "source": [ "[attr for attr in dir(df.plot) if not attr.startswith('_')]" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "### Area\n", "\n", "Like a line graph, but colors area under each line." ] }, { "cell_type": "code", "execution_count": 14, "metadata": {}, "outputs": [ { "data": { "text/plain": [ "" ] }, "execution_count": 14, "metadata": {}, "output_type": "execute_result" }, { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAXcAAAEGCAYAAACevtWaAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4xLjEsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy8QZhcZAAAbfUlEQVR4nO3de3hV9b3n8fd3Z+fCJeGSCAmgBhW5eDnKSb23o6WetvYC02ltGW3tZR7nPOfYVu3znLa2z3Taep6hp55qnY61PsqRTi/YUh0o7bFVRG1PqQpilYuAIkJCgBDIhoRc9uU7f+wdCCEpJDthJb98Xs/Ds7PWXmuv717sfPLbv7XWb5m7IyIiYYlFXYCIiAw8hbuISIAU7iIiAVK4i4gESOEuIhKgeNQFAFRUVHh1dXXUZYiIDCvr1q3b7+5n9PTckAj36upq1q5dG3UZIiLDipm93dtz6pYREQmQwl1EJEAKdxGRAA2JPncRkU7JZJLa2lra2tqiLmXIKCkpYdq0aRQWFp7yOgp3ERlSamtrKS0tpbq6GjOLupzIuTuNjY3U1tYyffr0U15P3TIiMqS0tbVRXl6uYM8xM8rLy/v8TUbhLiJDjoL9eP3ZHwr3HA19LCIhGfF97ofbkvzvZ97gx2t2cPbEMdxwUSXzZk/mgillaj1EoD2VZuueZjbuTnBW+WiuOrci6pIkYjV3P8X+5o4Be72KsUWs/fr1vT5/7bXX8tWvfpX3vve9R+fdd999bN26lQceeKDHdcaOHUtzc/OA1TgQRmy4ZzLOsnW1fOfJ12ls6SBmsG3fYe59+jD3Pr2N8aMLuX7OZP5uTiVXn1fO6KIRu6sGTWtHms17DrGxLsGGukO8Vpdgy97DpDPHvkVdN/MMvnfjJUwYUxRhpRKlgQz2U3m9hQsXsnTp0uPCfenSpXz3u98d0DoG24hMrHVvH+SbKzbyal2CwphRXBCjPZ05bpnmthS/XFvLL9fWEo8Z76ieyA0XVXLdrElMmzA6osqHr+b2FJt2H2JDXYINdQleq0vwZkMznTleYEYGp8CMkniMtlT2/2P1lgauWvQMi/7LRcy/ZGqE70BGio9+9KN8/etfp729neLiYnbs2MHu3bu55JJLmDdvHgcPHiSZTHL33Xczf/7849Z99tlnueeee1i5ciUAt912GzU1NXz6059m3bp13HnnnTQ3N1NRUcGjjz5KVVUV999/Pw8++CDxeJw5c+awdOnSAXkfIyrc9yTa+M6Tr/PE+joKC4zCAiOZduDE/vZUl9ajA2u2N7JmeyMs38hZE0dzw0WVvGf2ZC49awIFMXXfdJU4kmTj7gQbdid4rS4b6Dv2txzdywUxI5Nx4rHs/0F7KkM6d8wj5X7cvgdoS6b54tJXWPriTr6/8FImlZac5nckI0l5eTmXXXYZTz75JPPnz2fp0qV8/OMfZ9SoUTzxxBOUlZWxf/9+rrjiCj784Q+fUvdtMpnk85//PMuXL+eMM87gscce42tf+xqLFy9m0aJFvPXWWxQXF9PU1DRg72NEhHtbMs0jf3yLHzzzBu2pNAUGqbT3EOk969pNEDOoPXiEB5/bzoPPbWdMcQHXzZzEey+o5F3nn8G4Uad+kUEIGpvb2dCtRV57sPXo851BXlhggNGRzhzdn8mMQ+bk/wudS6zZfoB3fmc135p/ITfWTNMxERk0nV0zneG+ePFi3J277rqL559/nlgsRl1dHXv37qWysvKkr7dlyxY2bNjA9ddn+/rT6TRVVVUAXHzxxdx0000sWLCABQsWDNh7CDrc3Z3fb9rLP/9mMzsPHKEgZsRjRke6/2fGdM+i9mSGla/Ws/LVeszgkmnjueGiKt49exLnVIwJJoDcnX2H248G+IZci3zPoWPn3nYGeVFBDMdJpv1okHf08g2przrSGb78q1dZ+uJOHrh5LlXjRuX9miLdLViwgDvvvJOXX36Z1tZW5s6dy6OPPkpDQwPr1q2jsLCQ6urqE849j8fjZDLHung7n3d3LrjgAtasWXPCtn7zm9/w/PPPs2LFCr797W+zceNG4vH8oznYcN+69zDf/PVG/uONRgoLjOJ4LPv1f4C3k+rWqn9lVxPrdzXxz7/dTGVZCe+7sJLr50zmHdUTKYoPjzNP3Z26ptZca/xQtnulNkFjy7EDUZ1BXlwQI+NOMtM1yDO9vfQA1JZ9XL+riXf9y2ruumE2n75KVzLKwBo7dizXXnstn/3sZ1m4cCEAiUSCSZMmUVhYyOrVq3n77RNH2z377LPZtGkT7e3ttLW1sWrVKq655hpmzpxJQ0MDa9as4corrySZTLJ161Zmz57Nrl27uO6667jmmmv42c9+RnNzM+PHj8/7PQQX7okjSe59eiv/d83bmEE81nu/+kDrmmkGNDS38+ifdvDon3ZQHI/xzhkVvO/CKq6deQYVY4sHvZ6uMhmnqTXJgZZ29jd3cKClg8bmdhpbOmjMTe9vbmd/czt7D7XT3J46uu7RII/HSGeyfeKdQd79QPTplMo43/z1Jn65tpYHb/5bzirXge4QVYwtGvBTIU/FwoUL+chHPnL0AOdNN93Ehz70IWpqarjkkkuYNWvWCeuceeaZ3HjjjVx88cXMmDGDSy+9FICioiKWLVvGF77wBRKJBKlUittvv53zzz+fm2++mUQigbtzxx13DEiwA9hQuHinpqbG871ZRzrj/OzFnfzr77eQOJIkFgMc8uiBGVDxmB3Xyp9VWcoNF1Uxb/Yk5lT1/Zz6TMY51JbsJajb2d/SwYHmY4GdaE322r3deTzYPfsnsLP7KpXJEGF290lBzPjS9efz3//TuTrAPcxt3ryZ2bNnR13GkNPTfjGzde5e09PyQbTc/7y9kf+5YiOv7zlMPGYU5bpghpKuwV4QM7bsPczrew7zvae2MnFMUe6c+slUV4zJhXW30G7JhnbD4XYamzs4eKSjz2FtZnjubJSu63Z/nXSXlvlwkXHnX363hV+9XMuPPlnDeZPGRl2SSKSGdbjXHjzC//rt6/zmtXoKC7Kh3pHKnHAq3VDTNTgNSLQmeeylXTz20q4elz8hrM0oiBmFubBOux/Xwu4xrLOvMIDvYmjp/AL6ZkMLf3fvc/zDtedx+3tmEC8YHsc5RAbasAz31o40P3zuTX703Juk0n5a+9UHmnN82BcWdLaujy1zQli7k053ri3ducMPVr/B8r/U8aOb/5Y5U8ZFXZL0kbvrIHkX/ek+H1bNGndnxV92c92/Psv9q7aRyjgxY8i31PsimT4+2KXvOj8Nuw608oH7/8jdKzfRoZ06bJSUlNDY2KjB/HI6x3MvKenbxXvDpuW+oS7Bt369iRd3HBjUUxslPA//8S1WvlrPgzfP5ZKzJkRdjpzEtGnTqK2tpaGhIepShozOOzH1xZAP98bmdu75/VaWvriTgpMMGSDSXeenZO+hNhY88Cf+6+Vn8T8+OIeSwoJI65LeFRYW9umOQ9KzIRvuyXSGH695m/ue3kpze4pYLHv6X0A9MHIaOdmD1z97YSe/27CHB26ay+XnlEddlsigGZLh/vzWBr61chNv7Gs+OrhUR0qpLvnp/AQdaOng4w/9mf986VTuXnAhY4qH5K+BSF5OekDVzBab2T4z29Bl3kQze8rMtuUeJ+Tmm5ndb2ZvmNmrZja3L8Xs2N/Cf1vyEp9a/CJvN7ZQFI+RyriCXQZU56fpifV1XLXoGZ7fqr5dCc+pnC3zKPC+bvO+Aqxy9xnAqtw0wPuBGbl/twI/PJUiMu4s+vfXuf7e51i9peHoqY06w0EG26HWJJ9a/CJ//5N1JFqTUZcjMmBOGu7u/jxwoNvs+cCS3M9LgAVd5v/Ys/4MjDezqpNtY8uewzz43JtkMmCcOJ63yGDp/KQ9uWEPVy1axZMb6iOtR2Sg9Pc898nuXg+Qe5yUmz8V6HqZZW1u3gnM7FYzW2tma1OpFMUFMdKuc7wlOkfa0/z9T17mlsUvcqBlYG/tJnK6DfRFTD1dUtZjM9zdH3L3GnevsVhBpKMLisCxD+pzWxu4atEqnlhfqwtpZNjqb7jv7exuyT3uy82vBc7sstw0YPfJXkyXGctQ057KcMdjf+HGH63h31+rZ39ze9QlifRJf88BWwHcAizKPS7vMv82M1sKXA4kOrtvRIaTzgb7SzsO8tKOgwBMHT+Ka86r4IpzJ/KO6om6UboMaScdz93Mfg5cC1QAe4FvAP8P+AVwFrAT+Ji7H7BsE/wHZM+uOQJ8xt1POlD7qCnn++RP3ZvH2xAZXJ1jxHcd5K1ibBFXnlPOledWcNn0iZx7Rji3VZTh4a+N5z4kbtahcJfhJmYQs+NvwFJaEufy6RO5Khf2s6vKdOMQGVTB36xD5HTLePb6jE5Gdijqpzfv4+nN2UNQJYUx5p41gavPq+Dy6RO5aNo4iuMa00ZOD4W7yABwThx6OpV21rzZyJ/ebASyY/VfOGUc75xRwTumT2TuWRM09IEMGn2yRAZJ97B3h1d2NbF+VxOQ7dqZMbmUd86o4PLp5byjegLjR5/azZtFTkbhLnKadA/7mBnb9h5my57DPPyHtwA4u3w07zyvgsvOKeey6olUjuvbDRpEOincRSLSPezjMaP2wBF+8sJOfvLCTgAmlxVz9bkVzD17AjMrSzl/cinjRhVGUe6Il844LR0pWtpTJFNORWkRo4uGboQO3cpERpgTW/awv7mDx9fX8fj6uqPzy8cUMWdKGXOqyjh/cikzK0s5b9JY3YCkm0zGOZJM09Keork91eUxO68zqJs7p7st19zWZfmOFO09jI0yqrCASWXFTBk3iqrxJUwuK6GyrITJZcVMLstOn1FaTGEEN2pXuIsMURnn2NVUOfGYkWhN8odt+/nDtv1H55tlL7K6YEoZsyrLmFVZyvmVpVSXjxnWp2O6O40tHdQ3tbE70cqeRBsHj3T0GMrN7SkOt2Wnj3SkaU2e+k04zY6NndJ1t3ee8moGRfFYbhnHvfMgeobaA0d4u/FI768NjBtdyOSyEqaOH0XluBIml5ZQOa6YSUf/GJQwYXThgF4noXAXGUZ6GzE1HjPqE63UHmzldxv3Hjd/esUYLpw67mjgz6ospbKsJPILrtydRGuS3U1t1CdaqU/kHnNBXteUDfPsbTWPZ2QDGU4MYzMjZlBUYEffY8azgZzOeI+DXXWGdXfHn/La92uC4rHsH4aWthTbWrPHV6yXV4rHjPKxRVSNG8WU8SVUlo1iclkxleNKmFRaQuW47B+CUUWn9g1N4S4SgB4D0LL/3mxoZtu+5uOeG11UwIxJY7lw6jhmVpYyM9e9M5Bn6zS3p6hvamV3ou24x/pEG3VNrdQ3tdLWQ1dHgXH0dprxAqM4HsMdOroMLtjDlxrg2Led9HFLRqenP8bd5xjZ9wnQ2NzBvkPtvLLrhNWOGl1UwKTSYqaMH/VXt61wFwmUe8+hX2BGMp3h1doEf6lNHPfcxDGFzKrM9ufPrMwG/oxJpSe0FtuSaXbngrrzsT7Ryu6mY9PN7akTtt3ZQ5TxbEu1OB7DgWQqczT0upacrT/6q+gHk9Pz/1N3BQYFsRjJdIZdB46wo/EIhRVnze5teYW7yAiTdifdQ3d0PGYcak3xpy4XXkG2ZVk1roTqijEcPNLB7qa2Hu9a1T24i+IxzJ1klxvbd23IpjK6MU9fpB3S3YdGj8V7/aqlcBcR4K/05xcYew+3sTvRBmQHUcseXMyGc2fedA9uFNyRUriLyF/VvcsgnfHjRseUoen0n3wpIiKDTuEuIhIghbuISIAU7iIiAVK4i4gESOEuIhIghbuISIAU7iIiAVK4i4gESOEuIhIghbuISIAU7iIiAVK4i4gESOEuIhIghbuISIAU7iIiAcor3M3sDjPbaGYbzOznZlZiZtPN7AUz22Zmj5nZwN1xV0RETkm/w93MpgJfAGrc/UKgAPgE8B3gXnefARwEPjcQhYqIyKnLt1smDowyszgwGqgH3g0syz2/BFiQ5zZERKSP+h3u7l4H3APsJBvqCWAd0OTuqdxitcDUntY3s1vNbK2ZrU21JPpbhoiI9CCfbpkJwHxgOjAFGAO8v4dFe7yTrrs/5O417l4THzOuv2WIiEgP8umWeQ/wlrs3uHsSeBy4Chif66YBmAbszrNGERHpo3zCfSdwhZmNNjMD5gGbgNXAR3PL3AIsz69EERHpq3z63F8ge+D0ZeC13Gs9BHwZuNPM3gDKgUcGoE4REemD+MkX6Z27fwP4RrfZ24HL8nldERHJj65QFREJkMJdRCRACncRkQAp3EVEAqRwFxEJkMJdRCRACncRkQAp3EVEAqRwFxEJkMJdRCRACncRkQAp3EVEAqRwFxEJkMJdRCRACncRkQAp3EVEAqRwFxEJkMJdRCRACncRkQAp3EVEAqRwFxEJkMJdRCRACncRkQAp3EVEAqRwFxEJkMJdRCRACncRkQAp3EVEApRXuJvZeDNbZmavm9lmM7vSzCaa2VNmti33OGGgihURkVOTb8v9+8CT7j4L+BtgM/AVYJW7zwBW5aZFROQ06ne4m1kZ8C7gEQB373D3JmA+sCS32BJgQb5FiohI3+TTcj8HaAD+zczWm9nDZjYGmOzu9QC5x0k9rWxmt5rZWjNbm2pJ5FGGiIh0l0+4x4G5wA/d/VKghT50wbj7Q+5e4+418THj8ihDRES6yyfca4Fad38hN72MbNjvNbMqgNzjvvxKFBGRvup3uLv7HmCXmc3MzZoHbAJWALfk5t0CLM+rQhER6bN4nut/HvipmRUB24HPkP2D8Qsz+xywE/hYntsQEZE+yivc3f0VoKaHp+bl87oiIpIfXaEqIhIghbuISIAU7iIiAVK4i4gESOEuIhIghbuISIAU7iIiAVK4i4gESOEuIhIghbuISIAU7iIiAVK4i4gESOEuIhIghbuISIAU7iIiAVK4i4gESOEuIhIghbuISIAU7iIiAVK4i4gESOEuIhIghbuISIAU7iIiAVK4i4gESOEuIhIghbuISIAU7iIiAVK4i4gESOEuIhKgvMPdzArMbL2ZrcxNTzezF8xsm5k9ZmZF+ZcpIiJ9MRAt9y8Cm7tMfwe4191nAAeBzw3ANkREpA/yCnczmwZ8AHg4N23Au4FluUWWAAvy2YaIiPRdvi33+4B/AjK56XKgyd1TuelaYGpPK5rZrWa21szWploSeZYhIiJd9TvczeyDwD53X9d1dg+Lek/ru/tD7l7j7jXxMeP6W4aIiPQgnse6VwMfNrMbgBKgjGxLfryZxXOt92nA7vzLFBGRvuh3y93dv+ru09y9GvgE8Iy73wSsBj6aW+wWYHneVYqISJ8MxnnuXwbuNLM3yPbBPzII2xARkb8in26Zo9z9WeDZ3M/bgcsG4nVFRKR/dIWqiEiAFO4iIgFSuIuIBEjhLiISIIW7iEiAFO4iIgFSuIuIBEjhLiISIIW7iEiAFO4iIgFSuIuIBEjhLiISIIW7iEiAFO4iIgFSuIuIBEjhLiISIIW7iEiAFO4iIgFSuIuIBEjhLiISIIW7iEiAFO4iIgFSuIuIBEjhLiISIIW7iEiAFO4iIgFSuIuIBEjhLiISoH6Hu5mdaWarzWyzmW00sy/m5k80s6fMbFvuccLAlSsiIqcin5Z7CviSu88GrgD+0czmAF8BVrn7DGBVblpERE6jfoe7u9e7+8u5nw8Dm4GpwHxgSW6xJcCCfIsUEZG+GZA+dzOrBi4FXgAmu3s9ZP8AAJN6WedWM1trZmtTLYmBKENERHLyDnczGwv8Crjd3Q+d6nru/pC717h7TXzMuHzLEBGRLvIKdzMrJBvsP3X3x3Oz95pZVe75KmBffiWKiEhf5XO2jAGPAJvd/XtdnloB3JL7+RZgef/LExGR/ojnse7VwCeB18zsldy8u4BFwC/M7HPATuBj+ZUoIiJ91e9wd/c/AtbL0/P6+7oiIpI/XaEqIhIghbuISIAU7iIiAVK4i4gESOEuIhIghbuISIAU7iIiAVK4i4gESOEuIhIghbuISIAU7iIiAVK4i4gESOEuIhIghbuISIAU7iIiAVK4i4gESOEuIhIghbuISIAU7iIiAVK4i4gESOEuIhIghbuISIAU7iIiAVK4i4gESOEuIhIghbuISIAU7iIiAVK4i4gESOEuIhKgQQl3M3ufmW0xszfM7CuDsQ0REendgIe7mRUA/wd4PzAHWGhmcwZ6OyIi0rvBaLlfBrzh7tvdvQNYCswfhO2IiEgv4oPwmlOBXV2ma4HLuy9kZrcCtwJQUJjevfi21CDU0ieZ1sMFsVGl6ajrGAq0L7K0H47RvjhmqOyLVGKv9fbcYIR7TxvzE2a4PwQ8NAjb7zczW5s6vL8m6jqGAu2LLO2HY7QvjhkO+2IwumVqgTO7TE8Ddg/CdkREpBeDEe4vATPMbLqZFQGfAFYMwnZERKQXA94t4+4pM7sN+B1QACx2940DvZ1BMqS6iSKmfZGl/XCM9sUxQ35fmPsJ3eEiIjLM6QpVEZEAKdxFRAI04sPdzM40s9VmttnMNprZF6OuKWpmVmBm681sZdS1RMnMxpvZMjN7Pff5uDLqmqJiZnfkfj82mNnPzawk6ppOFzNbbGb7zGxDl3kTzewpM9uWe5wQZY09GfHhDqSAL7n7bOAK4B81XAJfBDZHXcQQ8H3gSXefBfwNI3SfmNlU4AtAjbtfSPZEiU9EW9Vp9Sjwvm7zvgKscvcZwKrc9JAy4sPd3evd/eXcz4fJ/gJPjbaq6JjZNOADwMNR1xIlMysD3gU8AuDuHe7eFG1VkYoDo8wsDoxmBF274u7PAwe6zZ4PLMn9vARYcFqLOgUjPty7MrNq4FLghWgridR9wD8BmagLidg5QAPwb7kuqofNbEzURUXB3euAe4CdQD2QcPffR1tV5Ca7ez1kG4jApIjrOYHCPcfMxgK/Am5390NR1xMFM/sgsM/d10VdyxAQB+YCP3T3S4EWhuBX79Mh1588H5gOTAHGmNnN0VYlJ6NwB8yskGyw/9TdH4+6nghdDXzYzHaQHc3z3Wb2k2hLikwtUOvund/ilpEN+5HoPcBb7t7g7kngceCqiGuK2l4zqwLIPe6LuJ4TjPhwNzMj26+62d2/F3U9UXL3r7r7NHevJnvA7Bl3H5EtNHffA+wys5m5WfOATRGWFKWdwBVmNjr3+zKPEXpwuYsVwC25n28BlkdYS48GY1TI4eZq4JPAa2b2Sm7eXe7+2whrkqHh88BPc2MkbQc+E3E9kXD3F8xsGfAy2bPL1jMMLr8fKGb2c+BaoMLMaoFvAIuAX5jZ58j+8ftYdBX2TMMPiIgEaMR3y4iIhEjhLiISIIW7iEiAFO4iIgFSuIuIBEjhLtKL3KiQ/xB1HSL9oXAX6d14QOEuw5LCXaR3i4BzzewVM/tu1MWI9IUuYhLpRW6U0JW5McxFhhW13EVEAqRwFxEJkMJdpHeHgdKoixDpD4W7SC/cvRH4j9xNoXVAVYYVHVAVEQmQWu4iIgFSuIuIBEjhLiISIIW7iEiAFO4iIgFSuIuIBEjhLiISoP8PmO3JQceHL18AAAAASUVORK5CYII=\n", "text/plain": [ "
" ] }, "metadata": { "needs_background": "light" }, "output_type": "display_data" } ], "source": [ "df.plot.area(y='Values', x='t')" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "### Bar Graphs\n", "\n", "`bar` for vertical and `barh` for horizontal: " ] }, { "cell_type": "code", "execution_count": 15, "metadata": {}, "outputs": [ { "data": { "text/plain": [ "" ] }, "execution_count": 15, "metadata": {}, "output_type": "execute_result" }, { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAXcAAAEJCAYAAABv6GdPAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4xLjEsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy8QZhcZAAASoUlEQVR4nO3dfZBddX3H8fcXNiFAgGCyQCSURSc8Wgx0C7R0NBiQB4VEBh8i2iBYpsMz6YMUmGE62pkgtCLTjk5GInFqDZBKg9CCNBIZLSIJUEiIFARMloewIIkiDybk2z/uCbMud0127z3ZzS/v10zm3vM7D9/f2ex+7rm/c869kZlIksqyw3B3QJLUfoa7JBXIcJekAhnuklQgw12SCmS4S1KBOoa7AwATJkzIrq6u4e6GJG1Tli1b9lJmdjabNyLCvauri6VLlw53NyRpmxIRvxhonsMyklQgw12SCmS4S1KBRsSYuyRtsn79enp6enjjjTeGuysjxpgxY5g0aRKjRo3a4nUMd0kjSk9PD7vtthtdXV1ExHB3Z9hlJi+//DI9PT0ccMABW7yewzKSRpQ33niD8ePHG+yViGD8+PGDfidjuEsacQz23zWUn4fhLkl9TJ06lbvuuut32q677jrOO++8AdcZO3Zs3d0aNMfcf4+uy+4Y8rrPzPlIG3sibb9a+TtsZnN/mzNnzmTBggWceOKJb7ctWLCAa665pq39qJvhrhGh1T9gX0zVLmeccQZXXnklb775JjvttBPPPPMMzz33HFOmTGHatGm88sorrF+/ni996UtMnz79d9ZdsmQJ1157LbfffjsAF1xwAd3d3Zx11lksW7aM2bNn8+qrrzJhwgRuvPFGJk6cyPXXX8/Xv/51Ojo6OPTQQ1mwYEFb9sNwl6Q+xo8fz1FHHcWdd97J9OnTWbBgAZ/85CfZeeedufXWW9l999156aWXOOaYYzjttNO2aDx8/fr1XHjhhSxatIjOzk5uuukmrrjiCubNm8ecOXN4+umn2WmnnVi7dm3b9sNwl6R+Ng3NbAr3efPmkZlcfvnl3Hvvveywww48++yzrFmzhn322Wez23v88cdZvnw5J5xwAgBvvfUWEydOBODwww/nzDPPZMaMGcyYMaNt+2C4S1I/M2bMYPbs2Tz44IO8/vrrHHnkkdx444309vaybNkyRo0aRVdX1zsuT+zo6GDjxo1vT2+an5kcdthh3Hfffe+odccdd3Dvvfdy22238cUvfpEVK1bQ0dF6NHu1jCT1M3bsWKZOncrZZ5/NzJkzAVi3bh177bUXo0aN4p577uEXv3jnBzLuv//+PPbYY7z55pusW7eOxYsXA3DQQQfR29v7drivX7+eFStWsHHjRlavXs1xxx3Hl7/8ZdauXcurr77aln3wyF2Smpg5cyann3762yc4zzzzTE499VS6u7uZMmUKBx988DvW2W+//fjEJz7B4YcfzuTJkzniiCMAGD16NAsXLuSiiy5i3bp1bNiwgUsuuYQDDzyQz3zmM6xbt47M5NJLL2XcuHFt6X9kZls21Iru7u4ciZ/nvj1eCjlc++zVMtpk5cqVHHLIIcPdjRGn2c8lIpZlZnez5R2WkaQCGe6SVCDH3Eeo7XFISFL7eOQuacQZCecCR5Kh/DwMd0kjypgxY3j55ZcN+Mqmz3MfM2bMoNZzWEbSiDJp0iR6enro7e0d7q6MGJu+iWkwDHdJI8qoUaMG9Y1Das5hGUkq0GbDPSLmRcSLEbG8T9u7IuLuiHiietyzao+IuD4inoyIRyLiyDo7L0lqbkuO3G8ETurXdhmwODMnA4uraYCTgcnVv3OBr7Wnm5KkwdhsuGfmvcAv+zVPB+ZXz+cDM/q0fysbfgKMi4iJ7eqsJGnLDPWE6t6Z+TxAZj4fEXtV7fsCq/ss11O1PT/0LnpDjyQNVrtPqDb7SpKmF6tGxLkRsTQilnrJkyS111DDfc2m4Zbq8cWqvQfYr89yk4Dnmm0gM+dmZndmdnd2dg6xG5KkZoY6LHMbMAuYUz0u6tN+QUQsAI4G1m0avpFGKof9VKLNhntEfAeYCkyIiB7gKhqhfnNEnAOsAj5eLf6fwCnAk8BrwOdq6LMkaTM2G+6ZOXOAWdOaLJvA+a12SpLUGu9QlaQCGe6SVCDDXZIKZLhLUoEMd0kqkOEuSQXyyzqkYdLKzVPgDVSDtb3drOaRuyQVyCN3SVvN9nb0PJwMd0mq0XC9oDksI0kF8shd2g45PFI+j9wlqUCGuyQVyHCXpAIZ7pJUIMNdkgpkuEtSgQx3SSqQ4S5JBTLcJalAhrskFchwl6QCGe6SVCDDXZIKZLhLUoEMd0kqkOEuSQUy3CWpQC2Fe0RcGhErImJ5RHwnIsZExAERcX9EPBERN0XE6HZ1VpK0ZYYc7hGxL3AR0J2Z7wN2BD4FXA18JTMnA68A57Sjo5KkLdfqsEwHsHNEdAC7AM8DHwIWVvPnAzNarCFJGqQhh3tmPgtcC6yiEerrgGXA2szcUC3WA+zbbP2IODcilkbE0t7e3qF2Q5LURCvDMnsC04EDgHcDuwInN1k0m62fmXMzszszuzs7O4faDUlSE60MyxwPPJ2ZvZm5Hvgu8KfAuGqYBmAS8FyLfZQkDVIr4b4KOCYidomIAKYBjwH3AGdUy8wCFrXWRUnSYLUy5n4/jROnDwKPVtuaC3wBmB0RTwLjgRva0E9J0iB0bH6RgWXmVcBV/ZqfAo5qZbuSpNZ4h6okFchwl6QCGe6SVCDDXZIKZLhLUoEMd0kqkOEuSQUy3CWpQIa7JBXIcJekAhnuklQgw12SCmS4S1KBDHdJKpDhLkkFMtwlqUCGuyQVyHCXpAIZ7pJUIMNdkgpkuEtSgQx3SSqQ4S5JBTLcJalAhrskFchwl6QCGe6SVCDDXZIK1FK4R8S4iFgYET+LiJUR8ScR8a6IuDsinqge92xXZyVJW6bVI/evAndm5sHA+4GVwGXA4sycDCyupiVJW9GQwz0idgc+ANwAkJm/zcy1wHRgfrXYfGBGq52UJA1OK0fu7wF6gW9GxEMR8Y2I2BXYOzOfB6ge92pDPyVJg9BKuHcARwJfy8wjgN8wiCGYiDg3IpZGxNLe3t4WuiFJ6q+VcO8BejLz/mp6IY2wXxMREwGqxxebrZyZczOzOzO7Ozs7W+iGJKm/IYd7Zr4ArI6Ig6qmacBjwG3ArKptFrCopR5Kkgato8X1LwS+HRGjgaeAz9F4wbg5Is4BVgEfb7GGJGmQWgr3zHwY6G4ya1or25UktcY7VCWpQIa7JBXIcJekAhnuklQgw12SCmS4S1KBDHdJKpDhLkkFMtwlqUCGuyQVyHCXpAIZ7pJUIMNdkgpkuEtSgQx3SSqQ4S5JBTLcJalAhrskFchwl6QCGe6SVCDDXZIKZLhLUoEMd0kqkOEuSQUy3CWpQIa7JBXIcJekAhnuklQgw12SCtRyuEfEjhHxUETcXk0fEBH3R8QTEXFTRIxuvZuSpMFox5H7xcDKPtNXA1/JzMnAK8A5baghSRqElsI9IiYBHwG+UU0H8CFgYbXIfGBGKzUkSYPX6pH7dcDfAhur6fHA2szcUE33APs2WzEizo2IpRGxtLe3t8VuSJL6GnK4R8RHgRczc1nf5iaLZrP1M3NuZnZnZndnZ+dQuyFJaqKjhXWPBU6LiFOAMcDuNI7kx0VER3X0Pgl4rvVuSpIGY8hH7pn5d5k5KTO7gE8BP8jMM4F7gDOqxWYBi1rupSRpUOq4zv0LwOyIeJLGGPwNNdSQJP0erQzLvC0zlwBLqudPAUe1Y7uSpKHxDlVJKpDhLkkFMtwlqUCGuyQVyHCXpAIZ7pJUIMNdkgpkuEtSgQx3SSqQ4S5JBTLcJalAhrskFchwl6QCGe6SVCDDXZIKZLhLUoEMd0kqkOEuSQUy3CWpQIa7JBXIcJekAhnuklQgw12SCmS4S1KBDHdJKpDhLkkFMtwlqUCGuyQVaMjhHhH7RcQ9EbEyIlZExMVV+7si4u6IeKJ63LN93ZUkbYlWjtw3AH+VmYcAxwDnR8ShwGXA4sycDCyupiVJW9GQwz0zn8/MB6vnvwZWAvsC04H51WLzgRmtdlKSNDhtGXOPiC7gCOB+YO/MfB4aLwDAXu2oIUnaci2He0SMBf4duCQzfzWI9c6NiKURsbS3t7fVbkiS+mgp3CNiFI1g/3ZmfrdqXhMRE6v5E4EXm62bmXMzszszuzs7O1vphiSpn1aulgngBmBlZv5Tn1m3AbOq57OARUPvniRpKDpaWPdY4LPAoxHxcNV2OTAHuDkizgFWAR9vrYuSpMEacrhn5o+AGGD2tKFuV5LUOu9QlaQCGe6SVCDDXZIKZLhLUoEMd0kqkOEuSQUy3CWpQIa7JBXIcJekAhnuklQgw12SCmS4S1KBDHdJKpDhLkkFMtwlqUCGuyQVyHCXpAIZ7pJUIMNdkgpkuEtSgQx3SSqQ4S5JBTLcJalAhrskFchwl6QCGe6SVCDDXZIKZLhLUoEMd0kqUC3hHhEnRcTjEfFkRFxWRw1J0sDaHu4RsSPwL8DJwKHAzIg4tN11JEkDq+PI/Sjgycx8KjN/CywAptdQR5I0gMjM9m4w4gzgpMz8fDX9WeDozLyg33LnAudWkwcBjw+x5ATgpSGu26rhqu0+l193OGu7z9tO7f0zs7PZjI6h92dA0aTtHa8gmTkXmNtysYilmdnd6na2pdruc/l1h7O2+1xG7TqGZXqA/fpMTwKeq6GOJGkAdYT7A8DkiDggIkYDnwJuq6GOJGkAbR+WycwNEXEBcBewIzAvM1e0u04fLQ/tbIO13efy6w5nbfe5gNptP6EqSRp+3qEqSQUy3CWpQIa7JBXIcN9CEXFwREyLiLH92k/aCrWPiog/rp4fGhGzI+KUuus26ce3tnbNqu6fVfv84ZrrHB0Ru1fPd46Iv4+I70XE1RGxR821L4qI/Ta/ZNvrjo6IP4+I46vpT0fEP0fE+RExquba742Iv46Ir0bEP0bEX9b9c96eFHNCNSI+l5nfrGnbFwHnAyuBKcDFmbmomvdgZh5ZR91q+1fR+JyeDuBu4GhgCXA8cFdm/kNNdftfvhrAccAPADLztDrqVrV/mplHVc//gsbP/lbgw8D3MnNOTXVXAO+vrviaC7wGLASmVe2n11G3qr0O+A3wc+A7wC2Z2VtXvT51v03jd2sXYC0wFvgujX2OzJxVU92LgFOBHwKnAA8DrwAfA87LzCV11N2uZGYR/4BVNW77UWBs9bwLWEoj4AEeqnm/HqVxSekuwK+A3av2nYFHaqz7IPCvwFTgg9Xj89XzD9a8zw/1ef4A0Fk93xV4tMa6K/vuf795D9e9zzTeSX8YuAHoBe4EZgG71Vj3keqxA1gD7FhNR82/X4/2qbULsKR6/gdb4W9qD2AO8DPg5erfyqptXJ21N9Ov/2rn9ur4+IHaRMQjA80C9q6x9I6Z+SpAZj4TEVOBhRGxP80/bqGdNmTmW8BrEfHzzPxV1Y/XI2JjjXW7gYuBK4C/ycyHI+L1zPxhjTU32SEi9qQRdpHVEWxm/iYiNtRYd3mfd4D/GxHdmbk0Ig4E1tdYFyAzcyPwfeD71ZDIycBM4Fqg6eeHtMEO1c2Gu9II2T2AXwI7AbUOy9B4QXmrqrUbQGauqns4CLiZxjvQqZn5AkBE7EPjhfQW4IS6CkfEQO/yg8aoQNtsU+FOI8BPpPH2ra8A/qfGui9ExJTMfBggM1+NiI8C84A/rLEuwG8jYpfMfA34o02N1dhkbeFeBc1XIuKW6nENW+/3ZQ9gGY3/14yIfTLzhep8R50vpp8HvhoRV9L4IKf7ImI1sLqaV6ff2a/MXE/jzu7bImLnGuveQOMIdkcaL+S3RMRTwDE0PtG1Lt8AHoiInwAfAK4GiIhOGi8uderKzKv7NlQhf3VEnF1z7QdoDEU1+z0e185C29SYe0TcAHwzM3/UZN6/Zeana6o7icYR9AtN5h2bmT+uo261/Z0y880m7ROAiZn5aF21+9X7CHBsZl6+NeoN0IddgL0z8+ma6+wGvIfGi1lPZq6ps15V88DM/L+66wxQ+90AmflcRIyjcT5nVWb+tOa6hwGHAMsz82d11upX9/vAfwPzN/3fRsTewFnACZl5fI21lwMfy8wnmsxbnZltO6m+TYW7JLWqGvK7jMb3TOxVNa+h8U5pTmb2HxloZ+0zaJw3esdHnEfEjMz8j7bVMtwlqaHOq+62dm3DXZIqEbEqM/+ghNrb2glVSWrJMF51t1VrG+6StjfDddXdVq1tuEva3txO46bEh/vPiIglpdR2zF2SCuQHh0lSgQx3SSqQ4S4NICLGRcR5w90PaSgMd2lg4wDDXdskw10a2BzgvRHxcERcM9ydkQbDq2WkAUREF3B7Zr5vmLsiDZpH7pJUIMNdkgpkuEsD+zXVNwRJ2xrDXRpAZr4M/DgilntCVdsaT6hKUoE8cpekAhnuklQgw12SCmS4S1KBDHdJKpDhLkkFMtwlqUCGuyQV6P8BOcPFZiVdo8wAAAAASUVORK5CYII=\n", "text/plain": [ "
" ] }, "metadata": { "needs_background": "light" }, "output_type": "display_data" } ], "source": [ "df.plot.bar(y='Values', x='t')" ] }, { "cell_type": "code", "execution_count": 16, "metadata": {}, "outputs": [ { "data": { "text/plain": [ "" ] }, "execution_count": 16, "metadata": {}, "output_type": "execute_result" }, { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAX4AAAD4CAYAAADrRI2NAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4xLjEsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy8QZhcZAAASDUlEQVR4nO3df4xddZnH8fdDO7SUSosFtLYsg5taQFpLvUGUXSwgyw+RdgmrNLDLrmZJNsovTQzIHxvjH4vGuMiumjRQy+4qZa2wEIhEUmEbN4g7UxFaSkHlV6HSAnYEf0BLn/1jbtk6ndoW7r3fuff7fiU3954z5855zpzJZ8587znnicxEklSP/UoXIEnqLINfkipj8EtSZQx+SaqMwS9JlRlfuoC9ccghh2R/f3/pMiSpqwwODj6fmYeOnN8Vwd/f38/AwEDpMiSpq0TEk6PNd6hHkipj8EtSZQx+SapMV4zxP/TMEP1X3lm6DEljwEET9uOS9x3MEVP7COL1+TMPPqBgVWVNnDiRmTNn0tfXt1fLd0XwS9IOl7zvYOb/6TsYP+ktRPx/8B89c2rBqsrJTF544QU2bNjAkUceuVfvadtQT0QsjYhNEbFmp3l/FRFrI2J7RDTatW5JveuIqX27hH7NIoJp06bx+9//fq/f084x/mXAGSPmrQHOBVa1cb2SelgQhv4I+/rzaNtQT2auioj+EfPWwb4XKUlqnTE7xh8RFwMXA4w7aJcLzyQJgHP+9X9a+v2euObDf/TrCxYs4KqrruL0009/fd61117Lo48+yte//vVR3zN58mRefvnlltb5ZozZ0zkzc0lmNjKzMW7SlNLlSBIAixcvZvny5X8wb/ny5SxevLhQRftuzAa/JI1F5513HnfccQevvPIKAE888QTPPvss8+bN49RTT2X+/PnMmTOH2267bZf33nvvvZx99tmvT3/qU59i2bJlAAwODvLBD36Q9773vZx++uls3LgRgOuuu45jjjmGuXPncv7557dkG8bsUI8kjUXTpk3j+OOP56677mLhwoUsX76cj33sYxxwwAHceuutHHTQQTz//POccMIJnHPOOXv1mebWrVu55JJLuO222zj00EO5+eabufrqq1m6dCnXXHMNjz/+OBMmTGDLli0t2Ya2BX9E3AQsAA6JiA3APwIvAv8CHArcGREPZObpu/8ukjT27Bju2RH8S5cuJTP53Oc+x6pVq9hvv/145plneO6553j729++x++3fv161qxZw2mnnQbAa6+9xvTp0wGYO3cuF1xwAYsWLWLRokUtqb+dZ/XsbsDr1n39XnNmTGFgDx+4SKrDunXril+stWjRIj796U+zevVqfve73zF//nyWLVvG5s2bGRwcpK+vj/7+/l3OrR8/fjzbt29/fXrH1zOTd7/73dx33327rOvOO+9k1apV3H777XzhC19g7dq1jB//5qLbMX5J2keTJ09mwYIFfPzjH3/9Q92hoSEOO+ww+vr6uOeee3jyyV3viHzEEUfw8MMP88orrzA0NMTKlSsBmD17Nps3b349+Ldu3cratWvZvn07Tz/9NCeffDJf+tKX2LJlS0vODnKMX1JX29Ppl+2yePFizj333NfP8Lngggv4yEc+QqPRYN68eRx11FG7vOfwww/nox/9KHPnzmXWrFkcd9xxAOy///6sWLGCSy+9lKGhIbZt28bll1/Ou971Li688EKGhobITK644gqmTn3z/+1EZr7pb9JujUYjbcQiCZpDPUcfXbqMMWe0n0tEDGbmLrfHcahHkipj8EtSZQx+SV2nG4aoO2lffx4Gv6SuMnHiRF544QXDv2nH/fgnTpy41+/xrB5JXWXmzJls2LCBzZs3ly5lzNjRgWtvGfySukpfX99ed5rS6Loi+O25K+mNKHWO/1jnGL8kVabTPXffGhF3R8RjzeeD27V+SdLoOt1z90pgZWbOAlY2pyVJHdS24M/MVQzfhnlnC4Ebm69vBFpzj1FJ0l7r9Bj/2zJzI0Dz+bDdLRgRF0fEQEQMvPbboY4VKEm9bsx+uGvPXUlqj04H/3MRMR2g+bypw+uXpOp1OvhvBy5qvr4I2LUbsSSprdp5OudNwH3A7IjYEBGfAK4BTouIx4DTmtOSpA6yEYsk9SgbsUiSAINfkqpj8EtSZQx+SaqMwS9JlTH4JakyBr8kVcbgl6TKGPySVBl77krqOfba/eM84pekyhQJ/oi4LCLWRMTaiLi8RA2SVKuOB39EHAv8PXA88B7g7IiY1ek6JKlWJY74jwZ+lJm/zcxtwH8Df1mgDkmqUongXwOcFBHTImIScBZw+MiF7LkrSe3R8bN6MnNdRHwRuBt4GfgpsG2U5ZYASwAmTJ819psGSFKXKPLhbmbekJnzM/Mk4EXgsRJ1SFKNipzHHxGHZeamiPgT4Fzg/SXqkKQalbqA67sRMQ3YCnwyM39VqA5Jqk6R4M/MP9+X5efMmMKAV+JJUkt45a4kVcbgl6TKGPySVBmDX5IqY/BLUmUMfkmqjMEvSZUx+CWpMga/JFXGnruSupa9dd+YUq0Xr2i2XVwTETdFxMQSdUhSjUq0XpwBXAo0MvNYYBxwfqfrkKRalRrjHw8cEBHjgUnAs4XqkKTqdDz4M/MZ4MvAU8BGYCgzv9/pOiSpViWGeg4GFgJHAu8ADoyIC0dZzp67ktQGJYZ6PgQ8npmbM3MrcAvwgZELZeaSzGxkZmPcpCkdL1KSelWJ4H8KOCEiJkVEAKcC6wrUIUlVKjHGfz+wAlgNPNSsYUmn65CkWkVmlq5hjxqNRg4MDJQuQ5K6SkQMZmZj5Hxv2SBJlTH4JakyBr8kVcbgl6TKGPySVBmDX5IqY/BLUmUMfkmqjMEvSZWx9aKknmZ7xl15xC9JlSlxP/7ZEfHATo9fR8Tlna5DkmrV8aGezFwPzAOIiHHAM8Ctna5DkmpVeqjnVODnmflk4TokqRqlg/984KbRvmDrRUlqj2LBHxH7A+cA3xnt67ZelKT2KHnEfyawOjOfK1iDJFWnZPAvZjfDPJKk9ikS/BExCTgNuKXE+iWpZkWu3M3M3wLT9nb5OTOmMODVd5LUEqXP6pEkdZjBL0mVMfglqTIGvyRVxuCXpMoY/JJUGYNfkipj8EtSZQx+SaqMPXclaSc19Oj1iF+SKlPqJm1TI2JFRDwSEesi4v0l6pCkGpUa6vkqcFdmntdsyDKpUB2SVJ2OB39EHAScBPwtQGa+Crza6TokqVZ7HOqJiC/uzbx98E5gM/DNiPhJRFwfEQeOsg577kpSG+zNGP9po8w7802sczwwH/hGZh4H/Aa4cuRC9tyVpPbYbfBHxD9ExEPA7Ih4cKfH48CDb2KdG4ANmXl/c3oFw38IJEkd8MfG+L8NfA/4J/7wiPylzHzxja4wM38ZEU9HxOzMXA+cCjz8Rr+fJGnf7Db4M3MIGGK4KXqrXQJ8q3lGzy+Av2vDOiRJo4jMLF3DHjUajRwYGChdhiR1lYgYzMzGyPleuStJlTH4JakyBr8kVcbgl6TKGPySVBmDX5IqY/BLUmUMfkmqjMEvSZWx564kjUHt7P3rEb8kVabIEX9EPAG8BLwGbBvtXhKSpPYoOdRzcmY+X3D9klQlh3okqTKlgj+B70fEYERcPNoC9tyVpPYoNdRzYmY+GxGHAXdHxCOZuWrnBTJzCbAEYML0WWO/aYAkdYkiR/yZ+WzzeRNwK3B8iTokqUYdD/6IODAi3rLjNfAXwJpO1yFJtSox1PM24NaI2LH+b2fmXQXqkKQqdTz4M/MXwHv25T1zZkxhoI1XsUlSTTydU5IqY/BLUmUMfkmqjMEvSZUx+CWpMga/JFXG4Jekyhj8klQZg1+SKmPPXUnqoHb20t1bxY74I2JcRPwkIu4oVYMk1ajkUM9lwLqC65ekKhUJ/oiYCXwYuL7E+iWpZqWO+K8FPgtsL7R+SapWiUYsZwObMnNwD8vZc1eS2qDEEf+JwDkR8QSwHDglIv5j5EKZuSQzG5nZGDdpSqdrlKSe1fHgz8yrMnNmZvYD5wM/yMwLO12HJNXKC7gkqTJFL+DKzHuBe0vWIEm16Yord+25K0mt41CPJFXG4Jekyhj8klQZg1+SKmPwS1JlDH5JqozBL0mVMfglqTJdcQGXrRcldaux0GpxJI/4JakyJe7HPzEifhwRP42ItRHx+U7XIEk1KzHU8wpwSma+HBF9wA8j4nuZ+aMCtUhSdToe/JmZwMvNyb7mIztdhyTVqlSz9XER8QCwCbg7M+8fZRlbL0pSGxQJ/sx8LTPnATOB4yPi2FGWsfWiJLVB0bN6MnMLw41YzihZhyTVpMRZPYdGxNTm6wOADwGPdLoOSapVibN6pgM3RsQ4hv/w/Gdm3lGgDkmqUgyfZDO2NRqNHBgYKF2GJHWViBjMzMbI+V65K0mVMfglqTIGvyRVxuCXpMoY/JJUGYNfkipj8EtSZQx+SaqMwS9JlbHnriSNUe3q1+sRvyRVpsTdOQ+PiHsiYl2z5+5lna5BkmpWYqhnG/CZzFwdEW8BBiPi7sx8uEAtklSdjh/xZ+bGzFzdfP0SsA6Y0ek6JKlWRcf4I6IfOA6w564kdUix4I+IycB3gcsz89cjv27PXUlqjyLBHxF9DIf+tzLzlhI1SFKtSpzVE8ANwLrM/Eqn1y9JtStxxH8i8NfAKRHxQPNxVoE6JKlKHT+dMzN/CMS+vGfOjCkMtOkKNkmqjVfuSlJlDH5JqozBL0mVMfglqTIGvyRVxuCXpMoY/JJUGYNfkipj8EtSZey5K0l70K7et6V4xC9JlSl1W+alEbEpItaUWL8k1azUEf8y4IxC65akqhUJ/sxcBbxYYt2SVLsxO8Zvz11Jao8xG/z23JWk9hizwS9Jag+DX5IqU+p0zpuA+4DZEbEhIj5Rog5JqlFkZuka9qjRaOTAwEDpMiSpq0TEYGY2Rs53qEeSKmPwS1JlDH5JqozBL0mV6YoPdyPiJWB96To64BDg+dJFtFkN2whuZ6/p1u08IjMPHTmzK+7HD6wf7ZPpXhMRA72+nTVsI7idvabXttOhHkmqjMEvSZXpluBfUrqADqlhO2vYRnA7e01PbWdXfLgrSWqdbjnilyS1iMEvSZUZ08EfEWdExPqI+FlEXFm6nlaJiMMj4p6IWBcRayPisub8t0bE3RHxWPP54NK1tkJEjIuIn0TEHc3pIyPi/uZ23hwR+5eu8c2KiKkRsSIiHmnu1/f32v6MiCuav69rIuKmiJjYC/syIpZGxKaIWLPTvFH3XQy7rplJD0bE/HKVv3FjNvgjYhzwNeBM4BhgcUQcU7aqltkGfCYzjwZOAD7Z3LYrgZWZOQtY2ZzuBZcB63aa/iLwz83t/BXQC7fl/ipwV2YeBbyH4e3tmf0ZETOAS4FGZh4LjAPOpzf25TLgjBHzdrfvzgRmNR8XA9/oUI0tNWaDHzge+Flm/iIzXwWWAwsL19QSmbkxM1c3X7/EcEjMYHj7bmwudiOwqEyFrRMRM4EPA9c3pwM4BVjRXKTrtzMiDgJOAm4AyMxXM3MLvbc/xwMHRMR4YBKwkR7Yl5m5CnhxxOzd7buFwL/lsB8BUyNiemcqbZ2xHPwzgKd3mt7QnNdTIqIfOA64H3hbZm6E4T8OwGHlKmuZa4HPAtub09OALZm5rTndC/v1ncBm4JvNIa3rI+JAemh/ZuYzwJeBpxgO/CFgkN7blzvsbt/1RC6N5eCPUeb11LmnETEZ+C5weWb+unQ9rRYRZwObMnNw59mjLNrt+3U8MB/4RmYeB/yGLh7WGU1zjHshcCTwDuBAhoc9Rur2fbknPfH7O5aDfwNw+E7TM4FnC9XSchHRx3Dofyszb2nOfm7Hv43N502l6muRE4FzIuIJhofqTmH4P4CpzeEC6I39ugHYkJn3N6dXMPyHoJf254eAxzNzc2ZuBW4BPkDv7csddrfveiKXxnLw/y8wq3nWwP4Mf5B0e+GaWqI5zn0DsC4zv7LTl24HLmq+vgi4rdO1tVJmXpWZMzOzn+H994PMvAC4BzivuVgvbOcvgacjYnZz1qnAw/TW/nwKOCEiJjV/f3dsY0/ty53sbt/dDvxN8+yeE4ChHUNCXSUzx+wDOAt4FPg5cHXpelq4XX/G8L+HDwIPNB9nMTz+vRJ4rPn81tK1tnCbFwB3NF+/E/gx8DPgO8CE0vW1YPvmAQPNffpfwMG9tj+BzwOPAGuAfwcm9MK+BG5i+HOLrQwf0X9id/uO4aGerzUz6SGGz3Iqvg37+vCWDZJUmbE81CNJagODX5IqY/BLUmUMfkmqjMEvSZUx+CWpMga/JFXm/wDVADNn/7xqlwAAAABJRU5ErkJggg==\n", "text/plain": [ "
" ] }, "metadata": { "needs_background": "light" }, "output_type": "display_data" } ], "source": [ "df.plot.barh(y='Values', x='t')" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "### Box and Whisker Plot\n", "\n", "Gives a good summary info of the distribution of the data." ] }, { "cell_type": "code", "execution_count": 17, "metadata": {}, "outputs": [ { "data": { "text/plain": [ "" ] }, "execution_count": 17, "metadata": {}, "output_type": "execute_result" }, { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAYAAAAD4CAYAAADlwTGnAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4xLjEsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy8QZhcZAAAR60lEQVR4nO3df6xkZX3H8fenrlK1lh/LhfLTJe0GUSobvCUaI1XpWrrarhhbIUbXiG5/YKppYlnS1P6kgViLsVaTFZC1pStGRaggstkoNBXUi11gEXQpYtwuZS+CKNUoq9/+MeeW6fTO3Xtn7t11ed6vZHLOec7zPOc5/8xn5jln5qSqkCS152f29wAkSfuHASBJjTIAJKlRBoAkNcoAkKRGLdvfA1iIww8/vFasWLG/hyFJB5TbbrvtoaqaGCw/oAJgxYoVTE1N7e9hSNIBJck3Zyt3CkiSGmUASFKjDABJapQBIEmNMgAkqVEGgCQ1ygCQpEYZAJLUqAPqh2DSvpJknxzH53Fof/IbgDSLqlrQ69nnf3rBbXzz1/621wBIcnmS3Um295X9dpK7kvwkyeRA/QuS3Jvka0l+fUifJyT5YpIdSa5K8rTxT0WStBDz+QZwBXDmQNl24DXAzf2FSZ4LnA08r2vzgSRPmaXPi4FLqmol8Ahw7sKGLUka114DoKpuBh4eKLu7qr42S/W1wEer6odV9Q3gXuC0/grpTa6+HPh4V7QJePUIY5ckjWGxrwEcA3yrb3tnV9ZvOfCdqtozR53/lWR9kqkkU9PT04s6WElq2WIHwGy3Tgxe6ZpPnSd2VG2sqsmqmpyY+H9/Zy1JGtFiB8BO4Li+7WOBXQN1HgIOSbJsjjqSpCW22AFwLXB2koOSnACsBL7UX6F69759DnhtV7QOuGaRxyFJ2ov53Aa6GbgFODHJziTnJjkryU7gRcB1ST4LUFV3AR8DvgrcAJxXVT/u+rk+ydFdt+cDf5TkXnrXBC5b7BOTJM1tr78Erqpzhuy6ekj9C4ELZylf07d+HwN3B0mS9i1/CSxJjTIAJKlRBoAkNcoAkKRGGQCS1CgDQJIaZQBIUqMMAElqlAEgSY0yACSpUQaAJDXKAJCkRhkAktQoA0CSGmUASFKjDABJapQBIEmNms8jIS9PsjvJ9r6yw5JsSbKjWx7alb8zybbutT3Jj5McNkufVyT5Rl/dVYt7WpKkvZnPN4ArgDMHyjYAW6tqJbC126aq3l1Vq6pqFXABcFNVPTyk33fO1K2qbaMNX5I0qr0GQFXdDAy+ia8FNnXrm4BXz9L0HGDzWKOTJC2ZUa8BHFlVDwB0yyP6dyZ5Br1vDZ+Yo48Lk9yR5JIkBw2rlGR9kqkkU9PT0yMOV5I0aKkuAv8m8G9zTP9cADwH+BXgMOD8YR1V1caqmqyqyYmJicUfqSQ1atQAeDDJUQDdcvfA/rOZY/qnqh6onh8CHwZOG3EckqQRjRoA1wLruvV1wDUzO5IcDPxqf9mgvvAIvesH24fVlSQtjfncBroZuAU4McnOJOcCFwGrk+wAVnfbM84Cbqyq/x7o5/okR3ebVya5E7gTOBz46/FPRZK0EMv2VqGqzhmy64wh9a+gd+voYPmavvWXz294kqSl4i+BJalRBoAkNcoAkKRGGQCS1CgDQJIaZQBIUqMMAElqlAEgSY0yACSpUQaAJDVqr38FIR3oTvmLG3n0B48v+XFWbLhuSfs/+OlP5fY/e8WSHkNtMQD0pPfoDx7n/oteub+HMbalDhi1xykgSWqUASBJjTIAJKlRBoAkNWo+TwS7PMnuJNv7yg5LsiXJjm55aFf+0iSPJtnWvd41pM8Tknyxa39Vkqct3ilJkuZjPt8ArgDOHCjbAGytqpXA1m57xr9W1aru9ZdD+rwYuKRr/whw7sKGLUka114DoKpuBh4eKF4LbOrWN9F7sPu8dA+Cfznw8VHaS5IWx6jXAI6sqgcAuuURfftelOT2JJ9J8rxZ2i4HvlNVe7rtncAxww6UZH2SqSRT09PTIw5XkjRosS8CfwV4dlWdAvw98KlZ6mSWshrWYVVtrKrJqpqcmJhYpGFKkkYNgAeTHAXQLXcDVNV3q+qxbv164KlJDh9o+xBwSJKZXyEfC+wacRySpBGNGgDXAuu69XXANQBJfqGb4yfJaV3/3+5vWFUFfA547WB7SdK+M5/bQDcDtwAnJtmZ5FzgImB1kh3A6m4bem/q25PcDrwPOLt7wyfJ9UmO7uqdD/xRknvpXRO4bDFPSpK0d3v9M7iqOmfIrjNmqft+4P1D+lnTt34fcNo8xyhJWgL+EliSGmUASFKjDABJapQBIEmNMgAkqVEGgCQ1ygCQpEYZAJLUKANAkhplAEhSowwASWqUASBJjTIAJKlRBoAkNcoAkKRGGQCS1CgDQJIaNZ9HQl6eZHeS7X1lhyXZkmRHtzy0K399kju61xeSnDKkzyuSfCPJtu61avFOSZI0H/P5BnAFcOZA2QZga1WtBLZ22wDfAH61qp4P/BWwcY5+31lVq7rXtoUNW5I0rr0GQFXdDDw8ULwW2NStbwJe3dX9QlU90pXfChy7SOOUJC2yUa8BHFlVDwB0yyNmqXMu8Jk5+riwmyq6JMlBwyolWZ9kKsnU9PT0iMOVJA1akovASV5GLwDOH1LlAuA5wK8Ah81Rj6raWFWTVTU5MTGx6GOVpFaNGgAPJjkKoFvuntmR5PnApcDaqvr2bI2r6oHq+SHwYeC0EcchSRrRqAFwLbCuW18HXAOQ5Hjgk8Abqurrwxr3hUfoXT/YPqyuJGlpzOc20M3ALcCJSXYmORe4CFidZAewutsGeBewHPhAd3vnVF8/1yc5utu8MsmdwJ3A4cBfL9oZSZLmZdneKlTVOUN2nTFL3bcAbxnSz5q+9ZfPd4CSpKXhL4ElqVEGgCQ1ygCQpEYZAJLUKANAkhplAEhSowwASWqUASBJjTIAJKlRBoAkNcoAkKRGGQCS1CgDQJIaZQBIUqMMAElqlAEgSY2aVwAkuTzJ7iTb+8oOS7IlyY5ueWhXniTvS3JvkjuSnDqkzxckubOr977u8ZCSpH1kvt8ArgDOHCjbAGytqpXA1m4b4DeAld1rPfDBIX1+sNs/U3ewf0nSEppXAFTVzcDDA8VrgU3d+iZ6D3efKf9I9dwKHDLzEPgZ3fbPV9UtVVXAR/raS5L2gXGuARxZVQ8AdMsjuvJjgG/11dvZlfU7piufqw4ASdYnmUoyNT09PcZwJUn9luIi8Gxz+TVCnV5h1caqmqyqyYmJibEHJ0nqGScAHpyZ2umWu7vyncBxffWOBXYNtN3Zlc9VR5K0hMYJgGuBdd36OuCavvI3dncDvRB4dGaqaEa3/b0kL+zu/nljX3tJ0j4w39tANwO3ACcm2ZnkXOAiYHWSHcDqbhvgeuA+4F7gQ8Af9PWzra/b3wcu7er9B/CZ8U5FkrQQy+ZTqarOGbLrjFnqFnDekH5W9a1PASfP5/iSpMXnL4ElqVEGgCQ1ygCQpEYZAJLUKANAkhplAEhSowwASWqUASBJjTIAJKlRBoAkNWpefwUhHcieddIGfnnThr1X/Cn3rJMAXrm/h6EnEQNAT3rfu/si7r/owH/jXLHhuv09BD3JOAUkSY0yACSpUQaAJDXKAJCkRhkAktSose4CSvJ24K1AgA9V1XuTXAWc2FU5BPhO/5PA+treD3wP+DGwp6omxxmLJGlhRg6AJCfTe/M/DfgRcEOS66rqdX113gM8Okc3L6uqh0YdgyRpdONMAZ0E3FpV36+qPcBNwFkzO5ME+B1g83hDlCQthXECYDtwepLlSZ4BrAGO69v/EuDBqtoxpH0BNya5Lcn6YQdJsj7JVJKp6enpMYYrSeo38hRQVd2d5GJgC/AYcDuwp6/KOcz96f/FVbUryRHAliT3VNXNsxxnI7ARYHJyskYdryTp/xrrLqCquqyqTq2q04GHgR0ASZYBrwGumqPtrm65G7ia3rUESdI+MlYAdJ/eSXI8vTf8mU/8vwbcU1U7h7R7ZpJnzawDr6A3pSRJ2kfG/TO4TyRZDjwOnFdVj3TlZzMw/ZPkaODSqloDHAlc3btOzDLgn6vqhjHHIklagLECoKpeMqT8TbOU7aJ3oZiqug84ZZxjS5LG4y+BJalRBoAkNcoAkKRGGQCS1CgDQJIaZQBIUqMMAElqlAEgSY0yACSpUQaAJDXKAJCkRhkAktQoA0CSGmUASFKjDABJapQBIEmNGveRkG9Psj3JXUne0ZX9eZL/TLKte60Z0vbMJF9Lcm+SDeOMQ5K0cCM/ESzJycBb6T3M/UfADUmu63ZfUlV/O0fbpwD/AKwGdgJfTnJtVX111PFIkhZmnG8AJwG3VtX3q2oPcBNw1jzbngbcW1X3VdWPgI8Ca8cYiyRpgcYJgO3A6UmWJ3kGvef9Htfte1uSO5JcnuTQWdoeA3yrb3tnV/b/JFmfZCrJ1PT09BjDlST1GzkAqupu4GJgC3ADcDuwB/gg8IvAKuAB4D2zNM9sXQ45zsaqmqyqyYmJiVGHK0kaMNZF4Kq6rKpOrarTgYeBHVX1YFX9uKp+AnyI3nTPoJ088W0B4Fhg1zhjkSQtzLh3AR3RLY8HXgNsTnJUX5Wz6E0VDfoysDLJCUmeBpwNXDvOWCRJCzPyXUCdTyRZDjwOnFdVjyT5xySr6E3p3A/8LkCSo4FLq2pNVe1J8jbgs8BTgMur6q4xxyJJWoCxAqCqXjJL2RuG1N1F70LxzPb1wPXjHF+SNDp/CSxJjTIAJKlRBoAkNcoAkKRGGQCS1CgDQJIaZQBIUqMMAElqlAEgSY0a968gpAPCig3X7b3ST7mDn/7U/T0EPckYAHrSu/+iVy75MVZsuG6fHEdaTE4BSVKjDABJapQBIEmNMgAkqVEGgCQ1atxHQr49yfYkdyV5R1f27iT3JLkjydVJDhnS9v4kdybZlmRqnHFIkhZu5ABIcjLwVnoPfT8FeFWSlcAW4OSqej7wdeCCObp5WVWtqqrJUcchSRrNON8ATgJurarvV9Ue4CbgrKq6sdsGuBU4dtxBSpIW3zgBsB04PcnyJM+g97zf4wbqvBn4zJD2BdyY5LYk68cYhyRpBCP/Eriq7k5yMb0pn8eA24GZT/4k+ZNu+8ohXby4qnYlOQLYkuSeqrp5sFIXDusBjj/++FGHK0kaMNZF4Kq6rKpOrarTgYeBHQBJ1gGvAl5fVTWk7a5uuRu4mt61hNnqbayqyaqanJiYGGe4kqQ+494FdES3PB54DbA5yZnA+cBvVdX3h7R7ZpJnzawDr6A3pSRJ2kfG/TO4TyRZDjwOnFdVjyR5P3AQvWkd6F0o/r0kRwOXVtUa4Ejg6m7/MuCfq+qGMcciSVqAsQKgql4yS9kvDam7i96FYqrqPnq3jkqS9hN/CSxJjTIAJKlRBoAkNcoAkKRGGQCS1CgDQJIaZQBIUqMMAElqlAEgSY0a968gpCel7m9KFtbm4oUfZ8h/JUr7hAEgzcI3ZrXAKSBJapQBIEmNMgAkqVEGgCQ1ygCQpEYZAJLUKANAkhplAEhSo3Ig/eAlyTTwzf09DmkWhwMP7e9BSEM8u6omBgsPqACQflolmaqqyf09DmkhnAKSpEYZAJLUKANAWhwb9/cApIXyGoAkNcpvAJLUKANAkhplAKh5ST6f5NcHyt6R5ANztHls6UcmLS0DQILNwNkDZWd35dKTlgEgwceBVyU5CCDJCuBoYFuSrUm+kuTOJGsHGyZ5aZJP922/P8mbuvUXJLkpyW1JPpvkqK78D5N8NckdST669Kcnzc5nAqt5VfXtJF8CzgSuoffp/yrgB8BZVfXdJIcDtya5tuZx61ySpwJ/D6ytqukkrwMuBN4MbABOqKofJjlkiU5L2isDQOqZmQaaCYA3AwH+JsnpwE+AY4Ajgf+aR38nAicDW5IAPAV4oNt3B3Blkk8Bn1rEc5AWxACQej4F/F2SU4GnV9VXuqmcCeAFVfV4kvuBnx1ot4f/O5U6sz/AXVX1olmO9UrgdOC3gD9N8ryq2rN4pyLNj9cAJKCqHgM+D1zOExd/DwZ2d2/+LwOePUvTbwLPTXJQkoOBM7ryrwETSV4EvSmhJM9L8jPAcVX1OeCPgUOAn1uq85Lm4jcA6QmbgU/yxB1BVwL/kmQK2AbcM9igqr6V5GP0pnV2AP/elf8oyWuB93XBsAx4L/B14J+6sgCXVNV3lva0pNn5VxCS1CingCSpUQaAJDXKAJCkRhkAktQoA0CSGmUASFKjDABJatT/AGGbN/bu8udbAAAAAElFTkSuQmCC\n", "text/plain": [ "
" ] }, "metadata": { "needs_background": "light" }, "output_type": "display_data" } ], "source": [ "df.plot.box(y='Values', x='t')" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "### Density and Histogram\n", "\n", "These both plot the frequency/probability of the various values. The `density` or `kde` plot is basically a smoothed histogram." ] }, { "cell_type": "code", "execution_count": 18, "metadata": {}, "outputs": [ { "data": { "text/plain": [ "" ] }, "execution_count": 18, "metadata": {}, "output_type": "execute_result" }, { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAYgAAAD4CAYAAAD2FnFTAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4xLjEsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy8QZhcZAAAgAElEQVR4nO3dd3xUZdr/8c+V3kgCKbQQQofQIQIiCAhKEUEUFETFXh5xf8rjWnDXx9V1d+2urq66omJFxYaAAgIiXUJPgEDoCYEUIBBIn/v3xwxujAMkIZMzM7ner9e8MnPK5JsDmSvnPue+bzHGoJRSSlXmY3UApZRS7kkLhFJKKae0QCillHJKC4RSSimntEAopZRyys/qALUlOjraJCQkWB1DKaU8yvr163ONMTHO1nlNgUhISCA5OdnqGEop5VFEZP/Z1mkTk1JKKae0QCillHJKC4RSSimnvOYahFJKVVRaWkpGRgZFRUVWR3ELQUFBxMXF4e/vX+V9tEAopbxSRkYGDRo0ICEhARGxOo6ljDHk5eWRkZFBq1atqryfNjEppbxSUVERUVFR9b44AIgIUVFR1T6b0gKhlPJaWhz+qybHQpuYlFvJLyxl08Hj7Mkp4FRxGT4+QtOIILo0i6BtbJj+witVh7RAKMvZbIbFO7KZuWofa/bkUWZzPkdJTINArunZnOsvakHrmLA6TqlU9QwePJjHHnuM4cOH/7rslVdeYefOnbzxxhtO9wkLC6OgoKCuIp6XFghlqQ0HjvHEtymkZJ6geWQwd13amgHtomnfuAERwf6UltvIOFbIpgPHWbjtCO+s2Mt/lu9hXM84pl3RnuaRwVb/CEo5NWnSJGbNmvWbAjFr1iyef/55C1NVj16DUJYotxleXrSTa/+9ipyTxbx8fXeW/XEwD4/oSP820USHBeLv60NIgB/tGzfguota8M6UJFY/dhm3D2jFd1sOcflLy5i5ah+2s5xxKGWl8ePHM3fuXIqLiwHYt28fhw4dokePHgwdOpRevXrRtWtXvv3229/t+9NPPzF69OhfX0+dOpX3338fgPXr1zNo0CB69+7N8OHDycrKAuDVV18lMTGRbt26MXHixFr5GfQMQtW5U8Vl/M/HG1i2M4drejXnqbFdCAus2n/F2AZBPH5lIlP6JzD96xT+b04qi3dk8+rEHkSGBLg4ufJUf/kulW2HTtTqeyY2C+f/rup81vVRUVH06dOHH374gbFjxzJr1iyuv/56goOD+frrrwkPDyc3N5d+/foxZsyYKl1fKy0t5f777+fbb78lJiaGzz77jMcff5x3332Xf/zjH+zdu5fAwECOHz9eKz+jnkGoOpV/upQbZ6xlRXoufxvXlRcndK9ycagormEIM2+9iKev7sLq3bmMfm0FqYfyXZBYqZo708wE9ualSZMmYYxh+vTpdOvWjWHDhpGZmcmRI0eq9H5paWmkpKRw+eWX06NHD/7617+SkZEBQLdu3Zg8eTIfffQRfn6187e/nkGoOlNQXMbkGWvYebiANyb3YnjnJhf0fiLCTf1a0qVZOPd+tIHr31rD2zf3pn+b6FpKrLzFuf7Sd6Wrr76aadOmsWHDBgoLC+nVqxfvv/8+OTk5rF+/Hn9/fxISEn7XP8HPzw+bzfbr6zPrjTF07tyZ1atX/+57zZs3j59//pk5c+bw9NNPk5qaesGFQs8gVJ0oLbdx70fr2Z51kjdvuvDiUFHP+IZ8fV9/mkUGccu76/gh5XCtvbdSFyIsLIzBgwdz2223MWnSJADy8/OJjY3F39+fpUuXsn//70fbbtmyJdu2baO4uJj8/HwWL14MQIcOHcjJyfm1QJSWlpKamorNZuPgwYMMGTKE5557juPHj9fK3VBaIFSdeOLbVJbvyuXv47pyWcfGtf7+TSOC+fzui+nSPJypn2xgYaoWCeUeJk2axObNm3+9cDx58mSSk5NJSkri448/pmPHjr/bp0WLFlx33XW/Nhv17NkTgICAAGbPns0jjzxC9+7d6dGjB6tWraK8vJwbb7yRrl270rNnTx588EEiIyMvOLsY4x13gCQlJRmdMMg9zV6fwUNfbOaeQW14dOTvfxlq08miUm6a8Quph/J5++YkhnSIden3U+5r+/btdOrUyeoYbsXZMRGR9caYJGfb6xmEcqm0wyf50zdb6de6EQ9d0d7l369BkD8zb+tDhyYNuPvD9azbd9Tl31Mpb6UFQrlMabmNaZ9vIizQj1cn9cTPt27+u0UE+/PBbX2JaxjMnR8kszvHfXqmKuVJtEAol3lj6W5SD53gmXFdiW0QVKffu1FoAO/f0gdfEW59bx25BcV1+v2Ve/CWJvTaUJNjoQVCucS2Qyd4bckuxnRvVqt3LFVHfFQI70xJIvtkEXd+kExRabklOZQ1goKCyMvL0yLBf+eDCAqq3h9q2g9C1TqbzTD9661EhvjzlzHW3H9+Rs/4hrxyfQ/u+WgDT3ybwrPXdtMRYeuJuLg4MjIyyMnJsTqKWzgzo1x1aIFQte7LDRlsOnicFyd0p2Go9cNfjOjSlPsva8trS9LpFhfJjf1aWh1J1QF/f/9qzZ6mfk+bmFStOlFUyrM/pNEzPpJxPZtbHedXDwxrz5AOMfzlu1SS9c4mpapEC4SqVa8t3kXeqWL+MqYzPj7u05Tj6yO8MrEnzSODueejDRw5oRPZK3U+WiBUrck8XsjMVfu5tlcc3eIuvBdnbYsI9uftm5M4VVzGHz7dSFm57fw7KVWPaYFQtebVH3cB8ODlru8QV1PtGzfg6au7sHbvUV5dvMvqOEq5NS0Qqlbszingi/UHmdwv3u1neRvfO45re8Xx2tJ0VuzKtTqOUm5LC4SqFS8t2kmQvy/3DWlrdZQqefrqzrSJCeOBzzaRfVKvRyjljBYIdcG2Z51g3pYsbrukFdFhgVbHqZKQAD/emNyLguJSHpi1iXKdtlSp39ECoS7Yv3/aTWiAL3cObG11lGpp37gBT43pwqrdefxrSbrVcZRyO1og1AXZn3eKuVsOMblfSyJC/K2OU20TkuIY17M5/1y8kzV78qyOo5Rb0QKhLsiby/bg5+PDHQM8s8eqiPD01V1oGRXKA7M2cfRUidWRlHIbLi0QIjJCRNJEJF1EHnWyPlBEPnOsXysiCZXWx4tIgYg85MqcqmaOnCjiy/UZjE+KIza8bkdrrU1hgX68NqknR0+V8McvNuvgbko5uKxAiIgv8DowEkgEJolIYqXNbgeOGWPaAi8Dz1Za/zLwvasyqgvz7sq9lNls3H2pZ117cKZL8wimj+rI4h3ZzFix1+o4SrkFV55B9AHSjTF7jDElwCxgbKVtxgIzHc9nA0PFMdSmiFwN7AFSXZhR1dDpkjI+XXuAkV2a0jIq1Oo4tWJK/wSuSGzMsz/sYEvGcavjKGU5VxaI5sDBCq8zHMucbmOMKQPygSgRCQUeAf5yrm8gIneJSLKIJOuQvnXrqw2ZnCgq49ZLEqyOUmtEhOfGdyMmLJCpn2zkZFGp1ZGUspQrC4SzkdoqN+6ebZu/AC8bY845V6Qx5m1jTJIxJikmJqaGMVV1GWN4f9U+ujaPoHfLhlbHqVWRIQG8OqknmccLmf51il6PUPWaKwtEBtCiwus44NDZthERPyACOAr0BZ4TkX3AA8B0EZnqwqyqGlak55KeXcAt/RO8cvKdpIRGTLu8Pd9tPsRn6w6efwelvJQrC8Q6oJ2ItBKRAGAiMKfSNnOAKY7n44Elxm6gMSbBGJMAvAL8zRjzLxdmVdXw3sp9RIcFMLp7U6ujuMy9g9owoG00T36Xys4jJ62Oo5QlXFYgHNcUpgILgO3A58aYVBF5SkTGODabgf2aQzowDfjdrbDKvezNPcWSHdnc0LclgX6+VsdxGR8f4aXruxMW6MfUTzZQWKLzWav6x6VTjhpj5gPzKy17osLzImDCed7jSZeEUzXy6S8H8PMRbuwbb3UUl4ttEMRL1/Xg5nd/4am5qfz9mm5WR1KqTmlPalVlxWXlzF6fwbBOjT26Y1x1XNo+hnsHt+HTXw7y3ebKl9CU8m5aIFSVLdp2hKOnSphUD84eKpp2eXt6xUcy/autHMg7bXUcpeqMFghVZZ/+coDmkcEMbBttdZQ65e/rw6uTeiICUz/dQEmZTlWq6gctEKpK9uedYmV6HhMvaoGPj/fd2no+cQ1DeG58N7Zk5PPsDzusjqNUndACoapk1rqD+PoIE5JanH9jLzWiS1OmXNySGSv28u2mTKvjKOVyWiDUeZWW2/giOYMhHWJpElE/Lk6fzeNXJnJRQkMe+XILKZn5VsdRyqW0QKjzWrw9m9yCYm7oW3/PHs4I8PPhjcm9aRgSwN0frievoNjqSEq5jBYIdV6z12cQ2yCQQe1jrY7iFmIaBPLWTb3JKShm6icbKS3Xi9bKO2mBUOeUV1DMT2nZjOvZHN96eHH6bLrFRfKPa7qyek8ef527zeo4SrmES3tSK8/33eZDlNkM1/SKszqK27mmVxzbs07wn+V7adEohDsGev7ESUpVpAVCndNXGzPp3CycDk0aWB3FLT02shMZxwp5Zv52mkUGM6qr9w5gqOofbWJSZ7XryEm2ZORzrZ49nJWPj/Dy9T3oFd+QBz7bxLp9R62OpFSt0QKhzurLDZn4+ghjejSzOopbC/L35Z2bk4iLDOaOmcnsOHzC6khK1QotEMqpcpvhm42ZDG4fQ3RYoNVx3F7D0ABm3taHYH9fbnxnLenZ55wMUSmPoAVCObV6dx6HTxTpxelqaNEohI/v7AsIN/xnDXtzT1kdSakLogVCOfXVhgzCg/wY2kn7PlRHm5gwPrmzL2U2o0VCeTwtEOp3TpeU8X3KYUZ3b0aQv/fOGucq7Rs34KPb+1JcZmPCm6t0SA7lsbRAqN9ZsiObwtJyxnTXi9M1ldgsnC/uuZgAXx8mvb2GtXvyrI6kVLVpgVC/M39rFtFhgVyU0MjqKB6tTUwYs+/tT2x4IDfN+IXZ6zOsjqRUtWiBUL9xuqSMJTuyGdmliQ6tUQuaRQYz+57+JCU05KEvNvPXudso07GblIfQAqF+Y+mOHIpKbdojuBY1DA3gg9v6cEv/BN5ZsZcbZ6wlK7/Q6lhKnZcWCPUb9ualAPq00ual2uTn68OTYzrzwoTubMnIZ8Qry5m3JcvqWEqdkxYI9avCknKW7MhmeGdtXnKV8b3jmP+HgSREh3LfJxu496P1HDquZxPKPWmBUL/6Kc1+99KV2rzkUgnRocy+52IeuqI9S9OyGfriMl5fmk5hSbnV0ZT6DS0Q6lfztmYRFarNS3XB39eHqZe1Y9GDgxjYLprnF6Rx6fNLmbFirxYK5Ta0QCgAikodzUtdmuDnq/8t6kqLRiG8fXMSn93Vj3axYTw9dxt9//YjT85JZdeRk1bHU/WczgehAHvz0ukSbV6ySt/WUXzSOorkfUf5YPV+Pl67n/dX7aNT03CuSGzMsE6NSWwWrteGVJ3SAqEAmLf1MI1CA+irzUuWSkpoRFJCI3ILEvlmYyYLU4/w6pJd/HPxLkIDfOkZ35CucRG0jg6ldUwoLRqG0Cg0QM/6lEtogVAUlZazePsRxvZorh80biI6LJA7BrbmjoGtyS0oZmV6Luv3HyN53zHeWb6H0nLzm+0jQ/xpGBJAoJ8PgX4+BDge/r4++PkIfj4++PmK/fmZZb6O5T5CaKAfseGBNG4QRJOIINrEhBEcoONw1XdaIBQ/peVo85Ibiw4LZGyP5ozt0RyAsnIbB48Vsje3gMxjheSdKuHoqRKOnS6lqLSckjIbJWU2ikptFBSVUVpuKLcZSm02ys48L7f95uvp0nJMhZojAi0bhdCpaTh9WzXikrbRtI0NQ0SbuOoTLRCK+VuzaBQaQL/W2rzkCfx8fWgVHUqr6NBae8+ychu5BSVknyzi0PFC0g4XkHbkBFsz8/k+5TAATSOCuKp7M8Z0b0bnZuFaLOoBLRD13JnmpTE9mmnzUj3m5+tDkwh781K3uEhGdPnvuoNHT7Nqdy6Lth3h3RV7efvnPXRvEckdA1oxUu9682paIOq5ZTtzOFVSzsgu2ryknGvRKITrG8Vz/UXxHDtVwndbDvHeyn3c/+lGWkaF8MfhHbiya1M9o/BCWvrrue+3ZhEZ4s/FbaKsjqI8QMPQAG6+OIHF0wbx1k29Cfb3ZeonGxn3hk6M5I20QNRjRaXl/Lg9m+GJTfDXZgJVDT4+wvDOTZj3h4E8P74bmccLGfv6Sp5fsIPiMu0J7i1c+qkgIiNEJE1E0kXkUSfrA0XkM8f6tSKS4FjeR0Q2OR6bRWScK3PWV8t35VJQXMaobtq8pGrG10eYkNSCHx8cxLiezXl96W7G/msl+3Qubq/gsgIhIr7A68BIIBGYJCKJlTa7HThmjGkLvAw861ieAiQZY3oAI4C3RESvl9Sy+Y7mpf7avKQuUESIPy9M6M67tyRx+EQRV722gh8cdz8pz+XKM4g+QLoxZo8xpgSYBYyttM1YYKbj+WxgqIiIMea0MabMsTwIMKhaVVxWzo/bjnBFYmNtXlK15rKOjZl7/wBax4Ryz0freX1pOsbor6+ncuUnQ3PgYIXXGY5lTrdxFIR8IApARPqKSCqwFbinQsFQtWD5zlxOFpfpzHGq1sU1DOHzey5mbI9mPL8gjT9/m0K5TYuEJ3Jls42ze94q/y856zbGmLVAZxHpBMwUke+NMUW/2VnkLuAugPj4+AtPXI/M35pFRLA/l7SNtjqK8kKBfr68fF0PmkYE8+ay3Rw9VcI/J/bUs1UP48p/rQygRYXXccChs23juMYQARytuIExZjtwCuhSaV+MMW8bY5KMMUkxMTG1GN27FZeVs0ibl5SL+fgIj47syJ+u7MT8rYf5f7M2UlpuszqWqgZXfjqsA9qJSCsRCQAmAnMqbTMHmOJ4Ph5YYowxjn38AESkJdAB2OfCrPXKil2O5iW9e0nVgTsGtv61SDwwa5M2N3kQlzUxGWPKRGQqsADwBd41xqSKyFNAsjFmDjAD+FBE0rGfOUx07D4AeFRESgEb8D/GmFxXZa1v5m3NIjzIj0vaaPOSqht3DGwNwF/nbadhqD9Pj+2iPa89gEtvHTXGzAfmV1r2RIXnRcAEJ/t9CHzoymz11X+bl5oQ4KfNS6ru2IcuL+HNZbtpGhHMfUPaWh1JnYf2LahnVqbncrKojCu7NbE6iqqHHh7egcP5hTy/II2mEUFc0yvO6kjqHLRA1DPztx6mQZAfA9rqRX1V93x8hOfGdyf7ZDGPfrmV1jFh9GgRaXUsdRbaxlCPlJTZWJh6mMsTG2vzkrJMgJ8Pb0zuReOIQO75cD05J4utjqTOQj8l6pGVu3M5UVSmM8cpy0WGBPDWjUkcLyzhvo836O2vbkoLRD0yf0sWDQL9GNBO715S1ktsFs6z13bjl31H+cf3O6yOo5yoUoEQkS9F5EoR0YLioUrLbSzcdoTLExsT6KeT0Sv3MLZHc6Zc3JIZK/byU1q21XFUJVX9wP83cAOwS0T+ISIdXZhJucDK9FzyC0t17CXldh4b1YmOTRrw0Beb9XqEm6lSgTDG/GiMmQz0wt6jeZGIrBKRW0XE35UBVe2Yv9XevDSwvTYvKfcS5O/La5N6crKojP/9YjM27WntNqrcZCQiUcAtwB3ARuCf2AvGIpckU7XmTPPSMG1eUm6qXeMG/Hl0Ij/vzOHdlXutjqMcqnoN4itgORACXGWMGWOM+cwYcz8Q5sqA6sKt2p3H8dOljOyineOU+5rcN55hnWJ5fkEae3IKrI6jqPoZxDvGmERjzN+NMVlgny4UwBiT5LJ0qlbM35JFWKAfl7bXznHKfYkIfxvXlUA/Hx6evUUH9XMDVS0Qf3WybHVtBlGuUVpuY8G2wwztFEuQvzYvKfcWGx7E/13VmeT9x5i5ap/Vceq9cw61ISJNsM/6FiwiPfnvBD/h2JublJtbs8fevKR3LylPcU2v5szdcojnFuzgso6xJESHWh2p3jrfGcRw4AXsk/28BLzoeEwDprs2mqoN87dmERrgyyBtXlIeQkT4+zXd8Pf1YfrXW3VOawuds0AYY2YaY4YAtxhjhlR4jDHGfFVHGVUNlZXbWJB6hKGdGmvzkvIoTSKCeHhER1btzmPO5soTUaq6cr4mphuNMR8BCSIyrfJ6Y8xLLkumLtiaPUc5eqpEm5eUR7qhTzyzkw/y9NztDO4QS0Swdrmqa+drYjrT+BcGNHDyUG5snqN5aXAHbV5SnsfXR3hmXFeOnirmxYVpVsepl855BmGMecvx9S91E0fVFnvz0mEu0+Yl5cG6NI/g5osTmLl6H+N7x9EtTueOqEtV7Sj3nIiEi4i/iCwWkVwRudHV4VTNrd1rb166sqt2jlOebdoV7YkOC+Txr1O0b0Qdq2o/iCuMMSeA0UAG0B74o8tSqQs2b2sWwf6+DGofa3UUpS5IeJA/f7qyE1sz8/lyfYbVceqVqhaIM1eHRgGfGmOOuiiPqgVl5TYWpBzmsk6xBAdo85LyfGO6N6NXfCTPLUijoLjM6jj1RlULxHcisgNIAhaLSAxQ5LpY6kL8svcoeadKdOY45TVEhCeu6kxuQTGvL023Ok69UdXhvh8FLgaSjDGlwClgrCuDqZo707w0pIM2Lynv0aNFJNf0bM6M5Xs5ePS01XHqherMENcJuF5EbgbGA1e4JpK6EOU2Y797qaM2Lynv8/CIjvj6CH+bv93qKPVCVe9i+hD7kBsDgIscDx3F1Q2t3ZtHboF2jlPeqUlEEPcObsP3KYdZsyfP6jhe75z9ICpIAhKNDori9uZtsTcvXdZRm5eUd7rr0tbM+uUAT323jbn3D8DHR86/k6qRqjYxpQB6Q72bKyu38UOKfWhvbV5S3irI35dHRnZkW9YJHafJxapaIKKBbSKyQETmnHm4MpiqvrWOu5dGd9PmJeXdrurWjM7NwnlhYRrFZeVWx/FaVW1ietKVIVTtmLsli5AAXwbr3UvKy/n4CI+O7MhNM37hozUHuH1AK6sjeaWq3ua6DNgH+DuerwM2uDCXqqbSchs/pGQxTMdeUvXEwHYxDGgbzb+W7OJEUanVcbxSVe9iuhOYDbzlWNQc+MZVoVT1rd6dx7HTpVypzUuqHnlkREeOnS7lrWW7rY7ilap6DeI+4BLgBIAxZheg7RhuZN6WLMIC/XTmOFWvdI2L4KruzZixYi9HTujgDrWtqgWi2BhTcuaFiPgBesurmygtt/FD6mEuT9TmJVX//PGKDpTbDK/8uMvqKF6nqgVimYhMB4JF5HLgC+A718VS1bEyPZf8wlIde0nVS/FRIUzu25LPkw+Snl1gdRyvUtUC8SiQA2wF7gbmA39yVShVPXO3ZNEg0I+B7aOtjqKUJaZe1pYgPx9eWqQzz9WmKt3maoyxicg3wDfGmBwXZ1LVUFJmnznu8s6NCfTT5iVVP0WHBXL7gFa8uiSdlMx8ujSPsDqSVzjnGYTYPSkiucAOIE1EckTkiaq8uYiMEJE0EUkXkUedrA8Ukc8c69eKSIJj+eUisl5Etjq+Xlb9H61+WJGew8miMu0cp+q92we2JjzIj5cW7bQ6itc4XxPTA9jvXrrIGBNljGkE9AUuEZEHz7WjiPgCrwMjgURgkogkVtrsduCYMaYt8DLwrGN5LnCVMaYrMAX4sBo/U70yd0sW4UF+DGirdy+p+i0i2J+7B7VhyY5s1u8/ZnUcr3C+AnEzMMkYs/fMAmPMHuBGx7pz6QOkG2P2OO6AmsXv55AYC8x0PJ8NDBURMcZsNMacGWQlFQgSkcDz/zj1S1FpOYtSj3BF5yYE+FVn5HalvNOtlyQQHRbAiwv1WkRtON+nir8xJrfyQsd1CH8n21fUHDhY4XWGY5nTbYwxZUA+EFVpm2uBjcaY4srfQETuEpFkEUnOyal/l0Z+SsvmZHEZY7o3szqKUm4hJMCPewe3ZdXuPFal/+6jS1XT+QpESQ3XATgbg7dy34lzbiMinbE3O93t7BsYY942xiQZY5JiYupfE8s3Gw8RHRZI/zaVa6pS9dfkvvE0jQjihYVp6AwFF+Z8BaK7iJxw8jgJdD3PvhlAiwqv44DKY/P+uo2j810EcNTxOg74GrjZGKP96CvJLyxlyY5srureFD9fbV5S6owgf1/uv6wdGw4cZ2lattVxPNo5P1mMMb7GmHAnjwbGmPM1Ma0D2olIKxEJACYClYcIn4P9IjTYpzFdYowxIhIJzAMeM8asrP6P5f0WpBympNzG2B6VW+2UUhOS4ohvFMKLC3dis+lZRE257E9PxzWFqcACYDvwuTEmVUSeEpExjs1mAFEikg5Mw94hD8d+bYE/i8gmx0PHfqrgm02ZJESF0D1O7/dWqjJ/Xx8eGNaO1EMn+CH1sNVxPJZ4SxtdUlKSSU5OtjpGnTicX8TF/1jMHy5rx4OXt7c6jlJuqdxmGP7KzwAseOBSfHVqUqdEZL0xJsnZOm289kBztxzCGBjbQ+9eUupsfH2EaZe3Jz27gG83ZVodxyNpgfBA32zKpFtcBK1jwqyOopRbG9G5CZ2bhfPKj7soLbdZHcfjaIHwMOnZBaRkntCL00pVgY+P8L9XtOfA0dN8kZxhdRyPowXCw8zZlImPwFU69pJSVTKkQyy94iN5bckuikrLrY7jUbRAeBBjDN9uPkT/NtHEhgdZHUcpjyAiPDS8A1n5RXy89oDVcTyKFggPkrz/GPvzTnN1T21eUqo6+reJ5pK2UbyxNJ1TxWVWx/EYWiA8yBfJBwkN8GVU1yZWR1HK4/zvFR3IO1XC+6v2WR3FY2iB8BCnS8qYtyWLUV2bEhJQpXmelFIV9IpvyNCOsby1bDf5haVWx/EIWiA8xA8phzlVUs6EpBbn31gp5dS0K9pzoqiMd5bvsTqKR9AC4SG+SM4gvlEIFyU0tDqKUh6rc7MIruzWlHdX7CWv4HczCKhKtEB4gINHT7N6Tx7je8chosMFKHUhHhzWnsLScv79kw4SfT5aIDzAVxsyEYFre8dZHUUpj9c2NoxxPeP4cM1+DucXWR3HrWmBcHM2m2H2hoP0bxNF88hgq+Mo5RUeGNYOmzH8a5C8EncAABGnSURBVOkuq6O4NS0Qbu6XfUc5eLSQ8Xr2oFStadEohOsvasGsXw5y8Ohpq+O4LS0Qbu7z5IOEBfoxorMOraFUbZo6pB2+PsIrP+pZxNlogXBj+adLmbcli7E9mhEc4Gt1HKW8SpOIIG7q15KvN2aQnn3S6jhuSQuEG/tyQwbFZTZu6BtvdRSlvNK9g9sQ7O/Ly3oW4ZQWCDdljOGTXw7QvUUknZvptKJKuUJUWCC3DWjFvC1ZpB7KtzqO29EC4abW7TtGenYBk/vo2YNSrnTHwNaEB/nx0sKdVkdxO1og3NQna/fTINCP0d314rRSrhQR7M/dg9qweEc2Gw4cszqOW9EC4YaOnSphfsphxvVqrgPzKVUHbumfQHRYAM9+vwNjjNVx3IYWCDf05YYMSvTitFJ1JjTQjz8MbcfavUdZmpZtdRy3oQXCzdhs9ovTveIj6dgk3Oo4StUbk/rE0yo6lL/P30FZuc3qOG5BC4SbWZ6ey56cU9zYr6XVUZSqV/x9fXh4eAd2ZRfw5YYMq+O4BS0Qbua9lXuJDgvkym56cVqpujaiSxN6xUfy4sKdnC7RqUm1QLiR3TkF/JSWw4394gn0057TStU1EWH6qE5knyxmxvK9VsexnBYINzJz1T78fYXJfbV5SSmrJCU0Ynjnxry5bDe59XxSIS0QbiK/sJTZ6zO4qlszYhoEWh1HqXrt4REdKSqz8eri+j0EhxYIN/FF8kFOl5Rz6yWtrI6iVL3XJiaMG/rE88naA+zJKbA6jmW0QLiBsnIbM1fvI6llQ7rG6bhLSrmDPwxtR6CfD3+bv8PqKJbRAuEGvk85zMGjhdw+QM8elHIXMQ0CmXpZO37cfoSfd+ZYHccSWiAsZozhzWW7aR0dyhWdm1gdRylVwW0DEkiICuGpudsorYed57RAWGz5rlxSD53g7kGt8fURq+MopSoI9PPlT1cmkp5dwAer91sdp85pgbDYv3/aTePwQK7u2dzqKEopJ4Z2iuXS9jG88uNO8urZba9aICy08cAxVu/J444BrbVjnFJuSkR4YnQihSXlvLAwzeo4dcqlBUJERohImoiki8ijTtYHishnjvVrRSTBsTxKRJaKSIGI/MuVGa305rLdhAf5MUlHbVXKrbWNDWNK/wRmrTtISmb9mXnOZQVCRHyB14GRQCIwSUQSK212O3DMGNMWeBl41rG8CPgz8JCr8lkt7fBJFm47wpT+CYQF6pwPSrm7PwxtR6OQAJ74NgWbrX7MGeHKM4g+QLoxZo8xpgSYBYyttM1YYKbj+WxgqIiIMeaUMWYF9kLhlV75cSehAX7cph3jlPIIEcH+PDaqExsOHGfWuoNWx6kTriwQzYGKRzHDsczpNsaYMiAfiKrqNxCRu0QkWUSSc3I85z7l1EP5fJ9ymNsGtKJhaIDVcZRSVXRtr+b0a92If3y/neyTXvv3669cWSCc3bNZ+bysKtuclTHmbWNMkjEmKSYmplrhrPTKj7toEOSnHeOU8jAiwjPjulJUauOvc7dbHcflXFkgMoAWFV7HAYfOto2I+AERwFEXZrLc1ox8Fm07wp0DWxMR7G91HKVUNbWJCeN/hrRhzuZDLPPyHtauLBDrgHYi0kpEAoCJwJxK28wBpjiejweWGC+fMfzFRWlEhvhz6yUJVkdRStXQvYPb0Do6lD99s5XCknKr47iMywqE45rCVGABsB343BiTKiJPicgYx2YzgCgRSQemAb/eCisi+4CXgFtEJMPJHVAeZ2V6Lj+l5XDvoDY0CNKzB6U8VaCfL8+M68rBo4W8/ONOq+O4jEvvrzTGzAfmV1r2RIXnRcCEs+yb4Mpsdc1mMzwzbzvNI4OZ0j/B6jhKqQt0cZsobugbz3+W72F458b0btnI6ki1TntS15GvN2ayLesED4/oQJC/9ppWyhtMH9WJZhHBPPTFFq9satICUQfOdNHvHhfBVd2aWR1HKVVLwgL9eH58N/bmnuL5Bd43DIcWiDrwzvI9ZOUXMX1UJ3x0xFalvEr/ttHcfHFL3lu1l7V78qyOU6u0QLjYwaOn+dfSdEZ1bULf1lXuA6iU8iCPjOhIi4Yh/O8XmzlRVGp1nFqjBcLFnpyTiq+P8OfRHn8TllLqLEID/Xj5+h72loKvtuItd+trgXChRduOsHhHNg8Ma0fTiGCr4yilXKh3y4ZMu7w9c7dk8Xmyd4zVpAXCRU6XlPHknFTaNw7jVh2QT6l64Z5BbejfJoon52wjPfuk1XEumBYIF3l+QRqZxwt5emwX/H31MCtVH/j6CC9f34PgAF+mfrKRolLPvvVVP7lcYO2ePN5buY8pF7fUC9NK1TONw4N48bru7Dh8kulfe/b1CC0Qtex0SRl/nL2F+EYhPDKyo9VxlFIWGNIhlgeHteerDZnMXLXP6jg1pgWilj37/Q4OHjvNCxO6ExKgM8UpVV/df1lbhnVqzNPztrPGQ/tHaIGoRUt2HGHm6v3c2r8VfVp537gsSqmq8/ERXrq+Oy2jQrjv4w1kHDttdaRq0wJRSw4dL2Ta55tJbBrOwyM6WB1HKeUGwoP8efumJErKbdz63jryCz2rE50WiFpQWm7jD59upLTMxuuTe+lgfEqpX7WNDeOtm3qzL+8Ud3+YTHGZ59zZpAWiFrywMI3k/cf42zVdaRUdanUcpZSb6d8mmufGd2PNnqM8MnuLx9zZpFdRL9A3GzN5a9kebugbz9geza2Oo5RyU+N6xpF5rJAXFu6kYWgAT4xORMS9B+/UAnEB1u8/xsNfbqFvq0Y8eVVnq+MopdzcfUPacvRUKe+u3EuQvy8PD+/g1kVCC0QNZR4v5O4Pk2kaEcSbN/YmwE9b65RS5yYi/Hl0J4rLyvn3T7sJ8vPl/w1rZ3Wss9ICUQO5BcXc9M5aikttzLoriYahAVZHUkp5CBHh6bFdKC6z8fKPOyk3hgeHtXPLMwktENWUX1jKzTN+4VB+IR/e3pe2sQ2sjqSU8jA+PsKz13bDR+DVxbs4UVjKE6MT3W5CMS0Q1XCquIzb3l/HruyTvDPlIi5K0M5wSqma8XUUiYhgf/6zfC/5haU8N76bWw3uqQWiio6fLmHKe+tIyczntUk9GdQ+xupISikPJyJMH9WJyJAAnl+QxpETRbwxuReRIe7RbO0+pcqNZZ8o4vq31rD90An+PbkXo7o2tTqSUspLiAj3DWnLixO6k7zvGFe/vtJt5pLQAnEeO4+c5No3V3Hw2Gneu/UirujcxOpISikvdG3vOD69qy8FxWWMe30VC1IPWx1JC8S5LN5+hGveWEVhiY1P7uzHJW2jrY6klPJivVs24tupA0iIDuXuD9fzxLcplk46pAXCiXKb4bXFu7jjg2QSokP47v5L6NEi0upYSql6oHlkMLPvvZg7BrTig9X7ufr1lew4fMKSLFogKjl0vJAb/rOGFxft5Kpuzfji7v40jQi2OpZSqh4J9PPlT6MTee+Wi8g5WczoV1fw0sK0Oh/oTwuEgzGGrzZkMOKVn0nJzOeFCd3550T73LJKKWWFIR1jWTRtEGO6N+PVJemM+udyVqbn1tn3F08ZVfB8kpKSTHJyco323Z1TwJ++TmH1njx6xUfy0nU9SNBRWZVSbuTnnTk8/s1WDh4t5LKOsUwf1bFWOuqKyHpjTJLTdfW9QKzZk8fNM34hyN+HR0Z2ZNJF8W7Xm1EppQCKSsuZuWof/1qazumScq7t1Zz7hrSlZVTN/6DVAnEOxWXlvLhwJ3cObE1Mg0AXJFNKqdp19FQJry3ZxSdrD1BmM9zaP4E/jU6s0XtpgVBKKS+UfaKIt3/eQ1zDYG65pFWN3uNcBUKH2lBKKQ8VGx5U4zOHqtC7mJRSSjmlBUIppZRTLi0QIjJCRNJEJF1EHnWyPlBEPnOsXysiCRXWPeZYniYiw12ZUyml1O+5rECIiC/wOjASSAQmiUjlxrLbgWPGmLbAy8Czjn0TgYlAZ2AE8Ibj/ZRSStURV55B9AHSjTF7jDElwCxgbKVtxgIzHc9nA0PFPu/eWGCWMabYGLMXSHe8n1JKqTriygLRHDhY4XWGY5nTbYwxZUA+EFXFfRGRu0QkWUSSc3JyajG6UkopVxYIZ92RK3e6ONs2VdkXY8zbxpgkY0xSTIzO8KaUUrXJlQUiA2hR4XUccOhs24iIHxABHK3ivkoppVzIZT2pHR/4O4GhQCawDrjBGJNaYZv7gK7GmHtEZCJwjTHmOhHpDHyC/bpDM2Ax0M4Yc9axbkUkB9hfaXE0UHdDH1aPZqsZzVZz7pxPs9VMbWRraYxx2gTjsp7UxpgyEZkKLAB8gXeNMaki8hSQbIyZA8wAPhSRdOxnDhMd+6aKyOfANqAMuO9cxcGxz+9+QBFJPlsXcqtptprRbDXnzvk0W824OptLh9owxswH5lda9kSF50XAhLPs+wzwjCvzKaWUOjvtSa2UUsopby8Qb1sd4Bw0W81otppz53yarWZcms1rhvtWSilVu7z9DEIppVQNaYFQSinllNcUCBF5UERSRSRFRD4VkSARaeUYJXaXY9TYADfK9r6I7BWRTY5HD4uy/T9HrlQRecCxrJGILHIct0Ui0tCNsj0pIpkVjtuoOszzrohki0hKhWVOj5XYveoYkXiLiPRyo2yDRSS/wjF84uzv7NJ8Exz/tjYRSaq0fZ2N5lydbCKSICKFFY7dmxZke15Edjj+X30tIpEV1tXucTPGePwD+zhNe4Fgx+vPgVscXyc6lr0J3OtG2d4Hxlt83LoAKUAI9luefwTaAc8Bjzq2eRR41o2yPQk8ZNHxuhToBaRUWOb0WAGjgO+xDxvTD1jrRtkGA3Pd4Nh1AjoAPwFJFZYnApuBQKAVsBvwdZNsCRW3s+i4XQH4OZ4/W+HftdaPm9ecQWD/EAl29OAOAbKAy7CPEgv2UWOvdpNs7jJsSCdgjTHmtLEPlrgMGMdvR9m16ridLZtljDE/Y+/QWdHZjtVY4ANjtwaIFJGmbpKtzjnLZ4zZboxJc7J5nY7mXM1sdeos2RY6ficA1mAfighccNy8okAYYzKBF4AD2AtDPrAeOF7hQDodEdaKbMaYhY7VzzhOE18WkcC6zob9L/RLRSRKREKw/9XbAmhsjMly5M8CYt0oG8BUx3F716rmrwrOdqyqNCKxRdkALhaRzSLyvdiHtnEn7nDszqWViGwUkWUiMtDiLLdhP1MFFxw3rygQjg+JsdhPq5oBodgnKqqszu/pdZZNRG4EHgM6AhcBjYBH6jqbMWY79lPURcAP2E9Py865Ux05R7Z/A22AHtgL7otWZTyPKo1IbJEN2Mff6Q68BnxjcZ7K3PnYZQHxxpiewDTgExEJtyKIiDyO/Xfi4zOLnGx2QcfNKwoEMAzYa4zJMcaUAl8B/bGf1p8ZTsSqEWGdZjPGZDmaH4qB97BoQiRjzAxjTC9jzKXYT2V3AUfONIc4vma7SzZjzBFjTLkxxgb8B+snkjrbsXKHEYmdZjPGnDDGFDiezwf8RSS6jrOdizscO6cczTd5jufrsbfzt6/rHCIyBRgNTDaOCxC44Lh5S4E4APQTkRAREewjyG4DlgLjHdtMAb51k2zbK/ziCva24ZRzvIfLiEis42s8cA3wKTAH+/EC646b02yV2vHHYdFxq+Bsx2oOcLPjbqZ+2JsWs9whm4g0cfy/Q0T6YP8cyKvjbOcyB5go9jnrW2G/OeEXizMBICIx4pj+WERaY8+2p44zjMDe4jDGGHO6wqraP251dTXe1Q/gL8AO7B8YH2K/kt/acYDSgS+AQDfKtgTY6lj2ERBmUbbl2IvpZmCoY1kU9iHWdzm+NnKjbB86jtsWxy9E0zrM8yn2JoZS7H+t3X62Y4X9dP917H9hbqXCnTBukG0qkOo4rmuwn9FacezGOZ4XA0eABRW2f9xx7NKAke6SDbi2wrHbAFxlQbZ07NcaNjkeb7rquOlQG0oppZzyliYmpZRStUwLhFJKKae0QCillHJKC4RSSimntEAopZRySguEUkopp7RAKKWUcur/A3uP+gUbHtDbAAAAAElFTkSuQmCC\n", "text/plain": [ "
" ] }, "metadata": { "needs_background": "light" }, "output_type": "display_data" } ], "source": [ "df.plot.density(y='Values', x='t')" ] }, { "cell_type": "code", "execution_count": 20, "metadata": {}, "outputs": [ { "data": { "text/plain": [ "" ] }, "execution_count": 20, "metadata": {}, "output_type": "execute_result" }, { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAYIAAAD4CAYAAADhNOGaAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4xLjEsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy8QZhcZAAAXOUlEQVR4nO3de7SVdZ3H8fcnOIqGSsJxMuB4sMhriHgiqpnE1PGSSjpmsOh+YabJzC6z8tIyx2otqykdMzNKBi9NWJZJipWaZk2pAYMK4oWShiMsPVIeIhVBvvPHfg5ru9n7nH1O+7cPh9/ntdZe57n8fs/z5Tmb89nPZT+PIgIzM8vXywa7ADMzG1wOAjOzzDkIzMwy5yAwM8ucg8DMLHPDB7uA/hozZky0t7cPdhlmZkPKkiVLno6I1mrzhlwQtLe3s3jx4sEuw8xsSJH0x1rzfGjIzCxzDgIzs8w5CMzMMjfkzhGYmfXYvHkznZ2dPP/884Ndyg5jxIgRjBs3jpaWlrr7OAjMbMjq7Oxkjz32oL29HUmDXc6giwjWr19PZ2cnEyZMqLufDw2Z2ZD1/PPPM3r0aIdAQRKjR4/u9x5SsiCQNELSfZLul7RC0r9XabOrpOslrZJ0r6T2VPWY2c7JIfBSA9keKfcINgFvjYjDgMnA8ZKmVbT5IPDniHgNcAnwpYT1mJlZFcnOEUTpQQcbi9GW4lX58IMZwIXF8A3A5ZIUfkiCmQ1A+zm3NHR5qy9+W6/zp0+fzrnnnstxxx23bdqll17Ko48+yhVXXFG1z8iRI9m4cWPVeYMl6cliScOAJcBrgG9ExL0VTcYCawAiYoukbmA08HTFcuYAcwDa2tpSlpxMo9+g9errjWxmAzdr1iwWLFjwkiBYsGABX/nKVwaxqv5LerI4Il6MiMnAOGCqpEMrmlQ7mLXd3kBEzI2IjojoaG2teqsMM7OmO/3007n55pvZtGkTAKtXr2bt2rVMnjyZo48+milTpvC6172Om266abu+d911FyeddNK28TPPPJP58+cDsGTJEo488kiOOOIIjjvuONatWwfAZZddxsEHH8ykSZOYOXNmw/4dTbl8NCKekXQXcDywvGxWJzAe6JQ0HNgL+FMzajIz+1uNHj2aqVOn8tOf/pQZM2awYMEC3vnOd7Lbbrtx4403sueee/L0008zbdo0TjnllLpO5G7evJmPfexj3HTTTbS2tnL99ddz/vnnM2/ePC6++GIef/xxdt11V5555pmG/TtSXjXUKmlUMbwbcAzwcEWzhcB7i+HTgV/4/ICZDSU9h4egdFho1qxZRATnnXcekyZN4phjjuGJJ57gySefrGt5jzzyCMuXL+fYY49l8uTJfOELX6CzsxOASZMmMXv2bK677jqGD2/c5/iUewT7AlcX5wleBnw/Im6WdBGwOCIWAlcB10paRWlPoHH7OmZmTfD2t7+dT37ykyxdupTnnnuOKVOmMH/+fLq6uliyZAktLS20t7dvd23/8OHD2bp167bxnvkRwSGHHMJvf/vb7dZ1yy23cPfdd7Nw4UI+//nPs2LFioYEQrI9goh4ICIOj4hJEXFoRFxUTL+gCAEi4vmIeEdEvCYipkbEH1LVY2aWwsiRI5k+fTof+MAHmDVrFgDd3d3ss88+tLS0cOedd/LHP25/B+j99tuPhx56iE2bNtHd3c0dd9wBwAEHHEBXV9e2INi8eTMrVqxg69atrFmzhqOOOoovf/nLPPPMMw27+si3mDCzncZgXSU3a9YsTjvttG2HiGbPns3JJ59MR0cHkydP5sADD9yuz/jx4znjjDOYNGkSEydO5PDDDwdgl1124YYbbuCss86iu7ubLVu2cPbZZ/Pa176Wd73rXXR3dxMRfOITn2DUqFENqV9D7ZB8R0dHDMUH0/jyUbPGW7lyJQcddNBgl7HDqbZdJC2JiI5q7X2vITOzzDkIzMwy5yAwsyFtqB3eTm0g28NBYGZD1ogRI1i/fr3DoNDzPIIRI0b0q5+vGjKzIWvcuHF0dnbS1dU12KXsMHqeUNYfDgIzG7JaWlr69SQuq86HhszMMucgMDPLnIPAzCxzDgIzs8w5CMzMMucgMDPLnIPAzCxzDgIzs8w5CMzMMucgMDPLnIPAzCxzDgIzs8w5CMzMMucgMDPLnIPAzCxzDgIzs8w5CMzMMpcsCCSNl3SnpJWSVkj6eJU20yV1S1pWvC5IVY+ZmVWX8lGVW4BPRcRSSXsASyTdFhEPVbT7VUSclLAOMzPrRbI9gohYFxFLi+G/ACuBsanWZ2ZmA9OUcwSS2oHDgXurzH6jpPsl3SrpkBr950haLGlxV1dXwkrNzPKTPAgkjQR+CJwdERsqZi8F9ouIw4CvAz+utoyImBsRHRHR0dramrZgM7PMJA0CSS2UQuC7EfGjyvkRsSEiNhbDi4AWSWNS1mRmZi+V8qohAVcBKyPiazXavLJoh6SpRT3rU9VkZmbbS3nV0JuBdwMPSlpWTDsPaAOIiCuB04GPSNoCPAfMjIhIWJOZmVVIFgQR8WtAfbS5HLg8VQ1mZtY3f7PYzCxzDgIzs8w5CMzMMucgMDPLnIPAzCxzDgIzs8w5CMzMMucgMDPLnIPAzCxzDgIzs8w5CMzMMucgMDPLnIPAzCxzDgIzs8w5CMzMMucgMDPLnIPAzCxzDgIzs8w5CMzMMucgMDPLnIPAzCxzDgIzs8w5CMzMMucgMDPLnIPAzCxzDgIzs8wlCwJJ4yXdKWmlpBWSPl6ljSRdJmmVpAckTUlVj5mZVTc84bK3AJ+KiKWS9gCWSLotIh4qa3MCMLF4vQH4ZvHTzMyaJNkeQUSsi4ilxfBfgJXA2IpmM4BrouQeYJSkfVPVZGZm20u5R7CNpHbgcODeilljgTVl453FtHUV/ecAcwDa2toGXEf7ObcMuK+ZGQzu35HVF78tyXKTnyyWNBL4IXB2RGyonF2lS2w3IWJuRHREREdra2uKMs3MspU0CCS1UAqB70bEj6o06QTGl42PA9amrMnMzF4q5VVDAq4CVkbE12o0Wwi8p7h6aBrQHRHrarQ1M7MEUp4jeDPwbuBBScuKaecBbQARcSWwCDgRWAU8C7w/YT1mZlZFXUEg6dCIWN6fBUfEr6l+DqC8TQAf7c9yzcysseo9NHSlpPsk/aukUUkrMjOzpqorCCLi74HZlE7sLpb035KOTVqZmZk1Rd0niyPiMeCzwGeAI4HLJD0s6bRUxZmZWXp1BYGkSZIuofTt4LcCJ0fEQcXwJQnrMzOzxOq9auhy4NvAeRHxXM/EiFgr6bNJKjMzs6aoNwhOBJ6LiBcBJL0MGBERz0bEtcmqMzOz5Oo9R3A7sFvZ+O7FNDMzG+LqDYIREbGxZ6QY3j1NSWZm1kz1BsFfyx8aI+kI4Lle2puZ2RBR7zmCs4EfSOq5Idy+wDvTlGRmZs1UVxBExO8kHQgcQOm2EQ9HxOaklZmZWVP056Zzrwfaiz6HSyIirklSlZmZNU29N527Fng1sAx4sZgcgIPAzGyIq3ePoAM4uLhbqJmZ7UTqvWpoOfDKlIWYmdngqHePYAzwkKT7gE09EyPilCRVmZlZ09QbBBemLMLMzAZPvZeP/lLSfsDEiLhd0u7AsLSlmZlZM9R7G+oPAzcA3yomjQV+nKooMzNrnnpPFn+U0sPoN8C2h9Tsk6ooMzNrnnqDYFNEvNAzImk4pe8RmJnZEFdvEPxS0nnAbsWzin8A/CRdWWZm1iz1BsE5QBfwIPDPwCJKzy82M7Mhrt6rhrZSelTlt9OWY2ZmzVbvvYYep8o5gYjYv+EVmZlZU/XnXkM9RgDvAPburYOkecBJwFMRcWiV+dOBm4DHi0k/ioiL6qzHzMwapK5zBBGxvuz1RERcCry1j27zgeP7aPOriJhcvBwCZmaDoN5DQ1PKRl9GaQ9hj976RMTdktoHXJmZmTVFvYeGvlo2vAVYDZzRgPW/UdL9wFrg0xGxolojSXOAOQBtbW0NWK2ZmfWo96qhoxKseymwX0RslHQipVtWTKyx/rnAXICOjg5/kc3MrIHqPTT0yd7mR8TX+rviiNhQNrxI0hWSxkTE0/1dlpmZDVx/rhp6PbCwGD8ZuBtYM9AVS3ol8GREhKSplM49rB/o8szMbGD682CaKRHxFwBJFwI/iIgP1eog6XvAdGCMpE7gc0ALQERcCZwOfETSFuA5YKYfhWlm1nz1BkEb8ELZ+AtAe28dImJWH/MvBy6vc/1mZpZIvUFwLXCfpBspfcP4VOCaZFWZmVnT1HvV0Bcl3Qr8QzHp/RHxv+nKMjOzZqn37qMAuwMbIuI/gU5JExLVZGZmTVTvoyo/B3wGOLeY1AJcl6ooMzNrnnr3CE4FTgH+ChARa+njFhNmZjY01BsELxSXdgaApJenK8nMzJqp3iD4vqRvAaMkfRi4HT+kxsxsp1DvVUP/UTyreANwAHBBRNyWtDIzM2uKPoNA0jDgZxFxDOA//mZmO5k+Dw1FxIvAs5L2akI9ZmbWZPV+s/h54EFJt1FcOQQQEWclqcrMzJqm3iC4pXiZmdlOptcgkNQWEf8XEVc3qyAzM2uuvs4R/LhnQNIPE9diZmaDoK8gUNnw/ikLMTOzwdFXEESNYTMz20n0dbL4MEkbKO0Z7FYMU4xHROyZtDozM0uu1yCIiGHNKsTMzAZHf55HYGZmOyEHgZlZ5hwEZmaZcxCYmWXOQWBmljkHgZlZ5hwEZmaZcxCYmWUuWRBImifpKUnLa8yXpMskrZL0gKQpqWoxM7PaUu4RzAeO72X+CcDE4jUH+GbCWszMrIZkQRARdwN/6qXJDOCaKLkHGCVp31T1mJlZdfU+oSyFscCasvHOYtq6yoaS5lDaa6Ctra0pxdnfrv2c/B5qt/ritw12CU2V4+94ZzSYJ4tVZVrVW11HxNyI6IiIjtbW1sRlmZnlZTCDoBMYXzY+Dlg7SLWYmWVrMINgIfCe4uqhaUB3RGx3WMjMzNJKdo5A0veA6cAYSZ3A54AWgIi4ElgEnAisAp4F3p+qFjMzqy1ZEETErD7mB/DRVOs3M7P6+JvFZmaZcxCYmWXOQWBmljkHgZlZ5hwEZmaZcxCYmWXOQWBmljkHgZlZ5hwEZmaZcxCYmWXOQWBmljkHgZlZ5hwEZmaZcxCYmWXOQWBmljkHgZlZ5hwEZmaZcxCYmWXOQWBmljkHgZlZ5hwEZmaZcxCYmWXOQWBmljkHgZlZ5hwEZmaZSxoEko6X9IikVZLOqTL/fZK6JC0rXh9KWY+ZmW1veKoFSxoGfAM4FugEfidpYUQ8VNH0+og4M1UdZmbWu5R7BFOBVRHxh4h4AVgAzEi4PjMzG4CUQTAWWFM23llMq/RPkh6QdIOk8dUWJGmOpMWSFnd1daWo1cwsWymDQFWmRcX4T4D2iJgE3A5cXW1BETE3IjoioqO1tbXBZZqZ5S1lEHQC5Z/wxwFryxtExPqI2FSMfhs4ImE9ZmZWRcog+B0wUdIESbsAM4GF5Q0k7Vs2egqwMmE9ZmZWRbKrhiJii6QzgZ8Bw4B5EbFC0kXA4ohYCJwl6RRgC/An4H2p6jEzs+qSBQFARCwCFlVMu6Bs+Fzg3JQ1mJlZ7/zNYjOzzDkIzMwy5yAwM8ucg8DMLHMOAjOzzDkIzMwy5yAwM8ucg8DMLHMOAjOzzDkIzMwy5yAwM8ucg8DMLHMOAjOzzDkIzMwy5yAwM8ucg8DMLHMOAjOzzDkIzMwy5yAwM8ucg8DMLHMOAjOzzDkIzMwy5yAwM8ucg8DMLHMOAjOzzDkIzMwylzQIJB0v6RFJqySdU2X+rpKuL+bfK6k9ZT1mZra9ZEEgaRjwDeAE4GBglqSDK5p9EPhzRLwGuAT4Uqp6zMysupR7BFOBVRHxh4h4AVgAzKhoMwO4uhi+AThakhLWZGZmFYYnXPZYYE3ZeCfwhlptImKLpG5gNPB0eSNJc4A5xehGSY8kqXjgxlBR845CpX2sHbY+drLa1Lx92p1quzXZjlxfr7X9je+v/WrNSBkE1T7ZxwDaEBFzgbmNKCoFSYsjomOw66hlR67PtQ2Maxu4Hbm+waot5aGhTmB82fg4YG2tNpKGA3sBf0pYk5mZVUgZBL8DJkqaIGkXYCawsKLNQuC9xfDpwC8iYrs9AjMzSyfZoaHimP+ZwM+AYcC8iFgh6SJgcUQsBK4CrpW0itKewMxU9SS2wx62KuzI9bm2gXFtA7cj1zcotckfwM3M8uZvFpuZZc5BYGaWOQdBHyR9XNJySSsknV1M+4qkhyU9IOlGSaNq9F0t6UFJyyQtblJtF0p6oljnMkkn1ujb6+0/EtV2fVldqyUtq9G34dtN0jxJT0laXjZtb0m3SXqs+PmKYrokXVZsmwckTamxzCOKOlcV7Qf0Zch+1ja7qOkBSb+RdFiNZc6X9HjZ9p7chNqmS+ouW+cFNZY5obilzGPFe2KXgdQ2gPr+ray25ZJelLR3lWWm3HbvKP5PbJXUUdH+3OK99Iik42oss2Hb7iUiwq8aL+BQYDmwO6UT67cDE4F/BIYXbb4EfKlG/9XAmCbXdiHw6T76DgN+D+wP7ALcDxycuraKNl8FLmjWdgPeAkwBlpdN+zJwTjF8Ts/vETgRuJXS91ymAffWWOZ9wBuLdrcCJzShtjcBryiGT+iltvnA6U3ebtOBm+tY5veBmcXwlcBHmlFfRb+TKV2l2OxtdxBwAHAX0FE2/eDi/+GuwITi/+ewlNuu/OU9gt4dBNwTEc9GxBbgl8CpEfHzYhzgHkrfkdghaquzbz23/0hWW/HJ+Qzgew1cZ68i4m62/45K+S1OrgbeXjb9mii5Bxglad/yjsX4nhHx2yj9r7ymrH+y2iLiNxHx52J68vdeP7dbn4rf/Vsp3VKm3/0bWN8sEr//qtUWESsjotqdEWYACyJiU0Q8Dqyi9P90m0Zvu3IOgt4tB94iabSk3Sl9Uhxf0eYDlD4NVhPAzyUtUek2Gc2q7czi0MG8nt3iCtVu/zG2SbUB/APwZEQ8VqN/yu1W7u8iYh1A8XOfYno922dsMb23NilqK/dBar/3AL5YvA8ukbRrk2p7o6T7Jd0q6ZAqfUcDz5R9kGr0duurPor35PHAD3tZRqptV0s977lk285B0IuIWEnp0M9twE8p7br1/BKQdH4x/t0ai3hzREyhtAv/UUlvaUJt3wReDUwG1lE6BFOprlt7JKitR1+fxpJttzo17PYoqUg6ilIQfKZGk3OBA4HXA3v30q6RlgL7RcRhwNeBH1dpM6jbrXAy8D8RUesuBoOx7Qb1Pecg6ENEXBURUyLiLZR28x4DkPRe4CRgdnFooFrftcXPp4AbqdjVS1FbRDwZES9GxFbg2zXWWc/tPxpeG2y7lchpwPW99E263co82XPIp/j5VDG93tujjOujTYrakDQJ+A4wIyLWV+scEeuKQ1ubgP+isduwam0RsSEiNhbDi4AWSWMq+j5N6VBbz5dZG/7eq1VfmZn08kEk8barpZ73XLJt5yDog6R9ip9tlP6AfU/S8ZQ+JZwSEc/W6PdySXv0DFM6wby8WtsG11Z+LPvUGuus5/YfDa+tmHUM8HBEdNbol3y7lSm/xcl7gZvKpr9HJdOA7p5DDT2K8b9ImlYcu31PWf9ktRXb80fAuyPi0Vqdy/4QitJx5EZuw1q1vbJYH5KmUvr78pKgKj403UnpljIv6Z+6vqKuvYAje1tn4m1Xy0JgpkoP65pA6cKP+8obJN12jTjjvDO/gF8BD1E6vHF0MW0VpeN5y4rXlcX0VwGLiuH9iz73AyuA85tU27XAg8ADxZtr38raivETgUcpXZ3QlNqK6fOBf6lom3y7UQqidcBmSp++PkjpmOsdlPZW7gD2LtqK0kOVfl9sy/KrO5aVDXdQ+iPxe+Byim/qJ67tO8Cfy957i8uWswh4VTH8i6L25cB1wMgm1HZm8Tu7n9KJ7DfVqG1/Sn/kVgE/AHZtxu+1aP8+SidlK5fTrG13ajG8CXgS+FlZ+/OL99IjlF2Blmrblb98iwkzs8z50JCZWeYcBGZmmXMQmJllzkFgZpY5B4GZWeYcBGZmmXMQmJll7v8Bm4K+W5uvM3QAAAAASUVORK5CYII=\n", "text/plain": [ "
" ] }, "metadata": { "needs_background": "light" }, "output_type": "display_data" } ], "source": [ "df.plot.hist(y='Values', x='t')" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "### Pie Charts\n", "\n", "Who doesn't love a good pie chart?" ] }, { "cell_type": "code", "execution_count": 25, "metadata": {}, "outputs": [ { "data": { "text/plain": [ "" ] }, "execution_count": 25, "metadata": {}, "output_type": "execute_result" }, { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAPUAAADnCAYAAADGrxD1AAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4xLjEsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy8QZhcZAAAgAElEQVR4nO2deXxU5b3/P99zzsxkn5A9IStrgiSssocluCuioMWtWm1VrPUi4q+X/u5PjddW097aanux1dbeam9rbbF1F6Uiq4BIWAJZCVtCCASyb7Oc8/39MQOyZJlJzpkzMznv12teQHLO83xJ5jPPc57vRswMAwOD4EHQ2wADAwN1MURtYBBkGKI2MAgyDFEbGAQZhqgNDIIMQ9QGBkGGIWoDgyDDELWBQZBhiNrAIMgwRG1gEGRIehtgYKA1u3fvTpAk6fcAxiPwFjIFwAGn0/m9KVOmnPbkBkPUBkGPJEm/T0pKyomPj28SBCGgkh0URaGGhoZx9fX1vwdwsyf3BNqnloHBQBgfHx/fGmiCBgBBEDg+Pr4Frl2GZ/doaI+Bgb8gBKKgz+G23WOtGqI26BciSiOiL4iojIgOEtEKvW0y6B3jmdrAE5wAVjFzMRFFAthNROuZuVRvwwZC5uqPpqg53tGiG3d7ct3atWujnnzyyXRFUXDPPfecef755+vVtOMcxkpt0C/MfJKZi91/bwNQBmC4vlYFFk6nEytXrkz/+OOPKysrKw++8847Mbt37w7RYi5D1AZeQUSZACYB2KmvJYHFxo0bwzMyMmzjxo2zh4SE8JIlSxrXrl0brcVchqgNPIaIIgC8A+BxZm7V255Aoqamxjx8+HD7uX+npqbaT5w4YdZiLkPUBh5BRCa4BP1nZv6H3vYEGj3VAiQiTU7kDVEb9AsREYDXAZQx8y/0ticQSU9Pv2hlrq2tNaekpDi0mMsQtYEnzAbwbQAFRLTX/bpBb6MCiXnz5nUcPXo0pLy83Nzd3U3/+Mc/YpYuXdqsxVyGS8ugX5h5KwDS2w618NQFpSYmkwkvvvji8euuu26MLMu46667zkydOrVbi7kMURsY+Ihly5a1LFu2rEXreYztt4FBkGGI2sAgyDBEbWAQZBjP1EFI7hu5IoCRADIBJABIvOQVC8AMQITrPSC5/y7CFefdBqAdQAuARgBnATQAOArgEIDqkvtKGnz1/zHwDkPUXkBEIQA2A7DA9bNby8zP6GVP7hu5BGAUgFwAVwAY5/5zjNtGLeduBVDtfh2AK2x0Z8l9JU1azmvQP4aovcMGoICZ290RVluJ6BNm3uGLycuyc0QAU/7zTmHagUzhGgCz4Fp19SAKrhjwSQBuc3+Nc9/IrYJL4DsAbCu5r2SfTvYNWQxRewG7Yv3a3f80uV+aJt+XZeckALgVwA0A5gGwzjnImw5kYp6W8w4QgmuXMAauYBXkvpFbB+BjAB8CWF9yX0mnfua5KbSqmnqJwpZ+/d6333575ueff26NjY11VlVVHVR1/kswRO0lRCQC2A3XtncNM6uerVSWnZMMYAlcK2A+XM+655lwhMPUnlNDUgB8z/3qzn0jdyNcAv97yX0lHhXSCwYeeOCBMytWrDh9//33Z2k9lyFqL2FmGcBEIooG8E8iGs/MBwY7bll2TiRcq9tdAGaiD89ETBvGELPCRIHmvQgBcJ379VLuG7mfxTrl1zfWnPgIhS02nW3TlOuvv769oqJCk6ysSwm0N4XfwMzNADbC9QYdMGXZOePLsnN+A6AOwBq44qz7/L0QYB1Ti8rBzOsHSABuyLbbHwNwAoXWX6LQOk5vo4IBQ9ReQETx7hUaRBQK4CoA5d6OU5adYyrLzrmjLDtnC4ASAMsBRHgzxuxS5ZS38/ojjzc1p8F12Pc4gIMotK5HobVAZ7MCGmP77R3JAN5wP1cLAP7GzB96enNZdo4ZwIMAfoRBlgOaXM0hfxjMAH5AhKIcyLY7Li19exWAq1Bo3QngBQDvo7AlYCuB6oEhai9g5v1wuXC8oiw7xwTgAQD/ASBNDVviWjAazAxXrnNAckdrW18+7ekA3oVr9f4pgLdQ2OL0jWWBjSFqDSnLzpEAfAcuMWeqObYAxIyoR9XhZIxWc1yfwdz1QHPrBA+uvALAmwD+A4XWJ1DY8vGg53a7oFpaWiIEQVCOHj2alZubq6mbadGiRVk7duyIbGpqkhITE/NWr15dt3LlyjNazGWIWiPKsnOuA/ASgLFazTHnoHLycLIYkKIe6XAURzLP9uKWsQA+QqH1EwBPoLDF67OMS7Fare3d3d0+OZH+4IMPjvhiHsA4KFOdsuycrLLsnPcAfAINBQ0AUw6xScvxteQHTS0D9bVfD6AEhdaXUGgdpqZNwYIhapUoy86RyrJzVgM4CA8bmQ2WxGaM8sU8aiMy1y7s7Jo4iCEkACsAVKHQer9KZgUNhqhVoCw7ZzKAYrhOa0N9Na/AiE87zT7b1qnFws6ualKnPFIsgD+g0Po+Cq2JKowXFBiiHgRl2TlUlp3zQ7iSF3L1sGFOqVKrx7wDhplXNDaPVHnURQAOoNC6VOVxAxJD1AOkLDsnBcB6AD+FK7FDF6ZWcUD9Docpyt50pzNVg6HjAKxFofV/UWj1qPNFVVVVVnl5ebbdbrfs3bs379SpU3Ea2OVzjNPvAVCWnbMYrjrYeqU9niflLEbobYM33NfS1qXxFHcDmI9C6zIUtmzr68LRo0cH3KOLJxii9gK33/kXAB7T25ZziIzk5LNcczKWVAlq0RTmlrtb27wO3hkAwwF84fZr//el38x9I1fV1MuS+0r6Tb08dOiQ6e67785qaGgwCYKA++67r+Gpp57SJEstoLZuelKWnRMNV16w3wj6HLPK+JjeNnjCeLt9fwizrw4STQB+jULrmwDrHnXnrvtde/jw4YO7du0qe/311xOMrpc6UpadMxLAdgBX621LT0yvUPQ2wSNWNDbr4Vf+tqm7MRGyXdddaUZGhmPOnDmdADBs2DBl5MiRXcePHzca5OlBWXbOXLjK82TrbUtvpJ5Bht429IdZ4eoZ3bZLkzd8AikOCxoqcmDv8Jm7sS8qKirMpaWlYfPmzWvv/2rvMUTdB2XZOffCdcKt+4FYX0gK0uJa+KTedvTFTR0dNboaoDjNOHtoLGxt4Xqa0dLSIixZsmRkUVFRTUxMjCZbLEPUvVCWnfMIgD/CVUrX75lVxof1tqFXmJ2PNrXoXwCBFRGNh8foNb3NZqMbb7xx5O2339543333adIcDzBE3SNl2Tn/BuAVBFBTuBnlit8+WCfKcnGCLCfobQcAgBVd3vOKouCOO+7IGDNmTHdhYaGmBS4Ml9YllGXnrALwc73t8JaM09AioEMVHmxu9asiByVXvwkAjOj0IwiL9Umd8vXr10e8++67saNHj+7Kzs4eBwDPPvvsCS0a5hmivgB3QsYLetsxEEwysoa18emmSPKPFdENMZ9Z0tY+WW87eoDQfHwEmI8gPK5R68muvfbadmb2SQtdY/vtxh3DHZCCPseMcq7W24ZLubLbdtCkYxhtv7TUZKKrOUpvM9TEEDXOn3L/VG87BsvMcsWhtw2X8nhjc7LeNvQDofnYSNjaA6mWep8MeVHvnjT3KrjiuAOerHr4lYDCFKUs127X7bTZY1gR0Hh4NBxdmvYf8xVDWtRrlm/I2zHtmf89kTzbJ886WmN2YlRkJ2v+fOgpt7W1B05nTJYlnK0erXfkmRoMWVGvWb4hCcCHIEqsGHPnlZWjbtukt02DhQCaVsFVetsBAGC2PdTcmqe3GV6hOCw4Wz0aihIwrsyeGJKiXrN8gxnAezhXrpdIqE1dMG9P3mObWOOGd1ozu4y79bYBADKczmKroniU1+xXOLvD0HwsXW8zBkPAbzUGyH8BmHbpF5tisuftmF64fdquH08SFacmGTRaM6qO/aKsz/ebWvz2xLus4K7+Lolzvzwip7ys38e3zs5Omj59erbdbidZlmnRokVNv/zlL+s8ncMbhtxKvWb5hlsA/Ftv3+8KjZ+5beYLlXZTuN88m3qDxYExYd2sekCDNwjMJ6/r6PRH37RuhISE8NatWysqKipKDx48WPr5559Hff7555rEoQ8pUa9ZviEDQL/dapymsLxtM59v6QxNOO4Ds1SFAOHKKta1ed7czq5KYYi9t/pDEARYrVYFAOx2OzmdTtKqucqQ+cGvWb7BBOBtAB7l9LIgZe2Y9lRYU/RoTTs3aMGsUta1sfvKpuZMPef3V5xOJ7Kzs8clJiZOmDdvXmtBQUGHFvMMGVEDeB6u/kyeQ0LcngkrsuqSZ6neWF5LxtaybgX0omR53wiH0+/zu/VAkiSUl5eXHj9+fH9xcXH4rl27jMonA2XN8g2zAawa0M1EYeVj7rqyauTSgHF5hdoxNsTOmiTg98c9rW1teswbSMTFxclz5sxp++CDD6xajB/0onZvu1/FYNIoiYSatIKAcXkRIE0+pMNzNXP7vS1tg+m8EbTU1dVJZ86cEQGgvb2dNm7cGJWTk6OJ+3EouLR+CFfnxEETSC6v2aXc+qWPyxJk2x17w5nn+HZW78nZ8BevrpfF0K7jSpwQFRlZFxthGZBXpKamxvSd73wnS5ZlMDMtXry48c4779TESxHUol6zfMNoAP9PzTHdLq/9M74qTDU7OmLUHFtNcmrY57Y91tQc6es5tYRBSosU11ljj4hgAJ2t3WlRoaYWkyjI3o41ffr0rrKyslINzLyMYN9+/waA6itqILi8wruRbXL6LrrMxHx0ble3J/2mAwKnFNZZTWnycbegAUBWWKpr7vLbYhTnCFpRr1m+4R4AC7Ua3+3yCvVXlxcB5gmHedA9nD3l2o7Oo76aS0uYBPmslNheak8M65TFy6LiWroccZ12p19UJe2NoBT1muUbLHC5sLSFhHh/dnnNOciaFbe7CGblsaZmTXtx+wK7FNlRyWl8wh4W0dd1J5u7/Xq19ltRE5FIRHuI6MMB3P4IziVraI0fu7zGH2OfJFTEyUpxilP2q1xub2CSHKfE5I5ye1y4TRH6PWfqsDujWrocflstxW9FDVdT8TJvb1qzfEMEgB+pb04f+KnLK7ILYyWZ7VrP80BLq99VXPEEZqBbsraXK6nCKUeIV3HY9S3dqcx+86u+CL8UNRGlArgRwO8HcPvjAHQpvtcUkz1vx7RndsiC5BfpjwSEXnFU2+dqYm5e1toWcMkbLJjsddLwzkp7TISDSfT2fptTDj3bYffLJg/+6tJ6CS7/slcukjXLNwwD8KQmFnlIV1iCX7m85pRy0z61W7xfwESbbb8ZmKvdDOrCAF75zyYAMAOnB9uoIRNA5qO/LfCoco7T6URubu64pKQk+xdffHFokHP3it+t1ER0E4DTAyyn+kMAmoTeeYM/ubzyjrCmbWZWNLb4VUnivlBEi61GSNVtF/XjH/84cdSoUVr35/Y/UQOYDeBmIjoK4K8ACojof/u7ac3yDZEAvq+xbR7jLy6v6A5kCwo7tRg7RFEqp9hsfts48BwM4jZTbFupI8Xc7DTpEglYXV1t+vTTT60PPvjgGa3n8jtRM/OPmDmVmTMB3AFgAzPf48Gt3wXgXyeSfuDyIiAip0abOPBb2jv8uikfALRwWMkZGiYfsUVFKhq1UWrtcvTpAgOARx99NO1nP/tZrSBoLzm/E/VAWLN8g4A+qpnoih+4vGYfZPWrejI7lje16NKa1hOY0f4H53WbJ9peu8KmiJqeHTW025L6+v5bb71ljYuLc+bn5/skz91fD8oAAMy8EcBGDy69CUCWpsYMBrfLqz08ZdPE/b+eSz5uvDfxMKseATXcKRfHKop3+ek+4hRHf32bvTC5hhN8coDXYXNau+zOkFBzz16PrVu3Rqxfvz56+PDhVpvNJnR0dAiLFy/Oeu+9945oYU9QrNTwo2fpvtDL5RXbhrHErGpXzOXNLX5XRldhavyZY9m26bZXptZwwnBfzn22w95rYYo1a9acOHXq1P4TJ06U/PGPfzw8Y8aMNq0EDfj5Su0Ja5ZvGAngGr3t8BQ9XF4EWEfVoaJqOFQJ5RSYTy9q75iixlhqcVhJ2v4t+9OjziB6dn/X5v8/9d3qLV2O2OHRXKtV3TFvCIaV+jsIoD7SgD4urzkHlXq1xprZ1V0qAl4HbGiBzMLJHzoe/KrA/ouZZxAdr5sdCkstXY5+3ak33XRT2zkfdWNjY9T+/fvH79+/f3xtbW2fz+XeEAyi/pbeBgwEX7u8Jh9i1Vw5jzc1+yauvg+YwXuVkVsm2l4N+5u84LIa7nrQ1Nn7FvxSmBm1tbXpo0ePrhw/fvzB5ubmmI6ODlV+RwEt6jXLN0wE4P8N2HrjnMsraeZXWk8V34JRUCFYOUJRDmTbHRrGqPWPncVjDzme2HeL/bn8NoTrHmx0jvZu2eqQFY92MG1tbeFms9kWGhpqFwSBo6OjG5uamlRJwAloUSNAV+mLIAorH3v3VK1dXgIQm3UKg+5ffUdrW5Ma9gwEZsgb5bxNebbfJ6xXpvpdLTQGU1OH3aNzErvdbjaZTOeTbcxms93hcAw2bBVA4Iv6dr0NUAW3y2tv3g80zfKafVAZXJsX5q4Hmlt1qW7SyeaKb9mfrvyOY/W8blj8tkhBa7dzMKutKr/7gBX1muUbJgMYpbcdatIYkzNvx7Rndigk2bQYf+ohHpS3Y6TDURzJ7NOoPWbY/inP3pRre33kLs7O8eXcA6HLLkc6PdiCX7oyu1duVVJYA1bUAG7T2wAt6ApLmLl11vMVDilc9W1uUtPgPgR/0NQSppYtntDCYfuvtxedWOl4dJ4MbaPC1ILB1NLdfwGFiIiIDpvNFtLV1WVWFIWam5tjhg0bpkqlmoD4QfXC1XoboBVOU3je1lnPH5m+6ydtYV2nVWurKjASUhv4aG08ZXp7r8hcu7CzyyfPscxoe12+Yc+PnXfnA+o7ftev8iSVwHOufvHifKP2bqc1Ntxy2Yfy8OHDc8PDw2VBECBJEm/evPl4VVXVGACIiYk5Ex4erkpQUkCKes3yDVEAJulth5a4XV4Nk/b96uCw5ipV6pYDwOxSpebteWKmt/ct7OyqJkDz2lz1POzr2+3P+CzEUwvabU4rM6OnQJRNmzZVJicnn8+ai4mJUb32d6Buv/PhJ8EPmqKBy2taJXv/O2fmFY3NmrqxFKbGIscdX86wrfF5iKfayApLnXZZt8O8QBX1fL0N8BnnXV5LNqsxXMpZ7xNfhinK3nSnU7NV+pCS/OWVtleU38o3z9JqDl/TYXf2mI65cOHC0VdccUXOz3/+c82aGAbk9htDSdSA2+W1cG5HeMqmCfv/e1BZXiIjJbGRa0/FkMciva+lTZNqHTILJ1c7v1fzd3l+0Ij5HF12ORzARSmv27ZtK8/MzHScOHFCKigoGHPFFVd0X3/99ao3Mgy4lXooPE/3hlour9llfNTji5lb7m5tU/XnzQzeo4zaMsH2Wvjf5fl+EeKpNl12+bKVOjMz0wEAw4cPd954443N27dv16TUVMCJGsAMDIXn6V5Qw+U1vcLzLMzxdvv+EFYvH9vO0tHvOVbtv9X+n/ntCPOvSjUqYpcVy4X+6tbWVqGpqUk49/cvvvgiKi8vT5MdUCBuv/222oavcLm8fnJk+q7nB+TySmvwvNHBisbmYd6O3xPMcH6hTNz6iOPxGTaYM9UYc6Bc6oLSinabMzw6zNwKALW1tdKtt946CgBkWaalS5eeve2221q1mDcQRa2aeyeQYcHkcnnt/VXpsJYqr5rWSgoyYlv45Fkr9dlVw6xw9Yxu26A/RDvZUnGvfbXyNY+dP9ixAolOuxweHYZWABg3bpy9oqLC6HrZC4aoz0FC/J6JKzIH4vKaVcb9Vt64qaOjZmCGuWBG9zty/qZc2+9Hfs1j/T7EU23sTkWXyqVeiZqIBCLS+znIx63U/ZwBurxmVCh9lw1mdj7a1DLgn3Uzh++71v7Tk6scjwRMiKfa2GU/FTUR/YWIoogoHEApgAoi+j/am3Y5a5ZvSIeXXTuGBG6X1968Rz3O8so81Xd0WJIs70mQZa8L9TOj7TXnjZsn2l7Lq+Q0/y0G6QPsTsWix7yerNTjmLkVwC0APgaQDuDbmlrVO8bWuw8aY8Z57PIyyRhhbe+9dPCDza2yt/PX87Bd+faX25533j1Xi5jtQENhFh2y4vNdiieiNhGRCS5Rv8fMDujX2VHXihuBgDcurxnl3GM/J2I+c2tbu8eFBRWms8877to2w7bmylqOT/HG3mCn2yH7fLX2RNSvAjgKIBzAZiLKAKDJUbwHBHRMsK9wu7yaO0Pj+zzomlWm9Njm9spu20ETYPJkriolZdtU2yt4Tb6p3yqeQxGbDodl/W4NmPlXAH51wZeOEdEC7Uzqk4BtbO5rXC6vp/t0eY2oR4+r6uONzf3+nJ0snPx3x0O17yhzA07MMf9doup4jT/I7fV7TvmbwhRnzpwR77nnnoyKiopQIsJrr7129KqrrupQ1Rh4IGoiSgTwPIAUZr6eiMYBmAngdbWN6Q9H54YuUMhWEqwWQYgKhxBpJSEilkjS5ZTR73G5vMKzK/73q5T6HZeFY5qdGBXRyU3tYXQ+wCRMUcpy7fZe3U/M4GIeveVe++pJHQi9UivTgwVZ+eaZ+qGHHkq75pprWtetW3e4u7ub2tvbNXEpe/IQ/0cA/wPgP9z/rgTwNnQQtWzbOw1AT5XY2wChCWRqIbJ0gsLsJETIJEQJJESZSLCGkhAZRULEMFBoNPlDxXVfQRRWPvaeKR3hyZtHV//zohxlAmhaJVdumEjn2+fc1tbeAKBHUdtZOvKwY2XrF8qkgM119jWy4lqpGxsbhZ07d0auXbv2KACEhIRwSEiI14eRnuCJqOOY+W9E9CMAYGYnEWlijAfE9vL1SECJBNvAbAPQCu7dQgdAjYDYDDK3E4V2kxDuJCEKJERJJFgtJERGfLMLEFWp8KgrRGJN2lXuLK81F2V5zS7l7g3n6pkw2x5qbs279HZmODcok7Z+37Fihg3mIe2m8hanW9Tl5eWWmJgY5+23355ZWloalpeX1/G73/2uJioqStV2SIBnou4goli4T7yJaAYA1as1eIgabWpMACcCzkSwE8ydYOVsX9e3AkIjyNRKFNIJCnN8swuwmkmMCiMhKpIoIoaEEL+pQd0TbpfX9um7fjJZYKcFAEbV8XlfdIbTWWxVlJkX3tPJlvJ77D9CMY+Z72NzgwKFXaJ2Op1UVlYW9vLLLx8vKCjouP/++9OeeuqppJdffnlwFV57wBNRPwHgfQAjiWgbgHjoV/RPD2d+FKBEfbMLaOlrF2B37QKkJpC5g4RQG1GEg4RIIiFKItFqISEqkoQIKyg8lkj06IRZTdwur/0zdz6bZnJ2DAtxYExoN7d2hVDU95taztvDjO6/y3N3/Mj54JyhGhGmBrLCIgBkZmbaExMT7QUFBR0AsGzZsqaioiLVWu1ciCen38VENA/AWLi2bRVuX7Ue+FwEXmIGOAlwJIEdYLkDjDO9XcsAmgGxEWRqIwrpcp0FRDIJkQKJVhMJ1vBzZwFEFtXCc7/J8vpJe1hXQ9rUKq7cNh7Dr+vonAwATRyxb5n9qahKTpuv1pxDFYVdbuP09HRnUlKSfd++fZYJEybYPvvss6ixY8dq0v3Uk9Pvey/50mQiAjO/qYVBvfHispsEBFgjvH4gANGAHA2WwdwNoLmvXUC3exfQDLKc2wXIJESCRKtEQlQoCVERJERGg8JiiYQ+c84vdHnNLjvULo7oriRG+G/kRft+6rxjTjBHhPXlgtKA8z/HX//618fvvvvuEXa7ndLT021vvfXWUS0m9GRbdaHbIgTAQgDFAHwqagRmmqiahACcAjhSXLuAdjB6jfJkAI2A2AQytxFZuiCE20mIhPsswEJCVBgJkVHFEx6Jjzv93tFrGreZ5the7jiB+Hwf/p+CngtDL2fNmtV14MCBMq3n9GT7/diF/yYiK4A/aWZR7wx1UXsDAYgB5BhwF5i7AKW5x9jeWEtKhWl8Zve/J9wgd7SL3QQ0+tpYrREI0aJAuoQ2CwTVT7f7YyBC6QQwWm1DPGDIljDSgmhzQvWshFtOm6WInH9EfGi7bdT73a9lPBJt3tNYQs322RREP2+FAVnRJ11B0MH968kz9Qf4ZhchwJXP/DctjeoFTQ4VhhqR0rDjsxJvrbGa4mYS0cgPzLs3syCnzcMXeX8x3bu3fXr8XGq2V5qLz3aSQ/G7zpIBiM8/TTxZqX9+wd+dAI4xc61G9vTKqrc/dLy47KZuuJ7rDbwkTIo6OSth8aEYc/JMIkoHgJPUVHaKmudEis5DALASP7M8x88xR5vH2AqSIR5r3y5VtKQTG4k0A8Uvt9/MrGnfZC9phSFqrwgRwxtmxt9cFh+SNp2Izh+CMVj51LwPIAiC6HQAQDbKclJQu60OabMBQM6ImCmnhneZSho3Cqe6pxPgty1k/RU9tt+9BpQTURsRtfbwaiMivVIv9Zo34DALIc35iUs33pz2aFhCaPpcIroocGeHVLXVSXIOAIiC83xpoyfxQoY7ysaFSKGOibHz7fmJZ5VQcbvP/gNBgihQ32WjNKDXlZqZ/bFskCHqfpDI3HZl3HW708KzJxHR/J6u6UD3qYNizfnnZVH8RtSJOJWai32bSjBx3oX3cJiUap+blCqc6tpj2t8YQYouh6Wq8I/fv6TqeEu+93iv3xMF10q9b98+y7Jly84X+aitrbX88Ic/PPH000+fVtUYeHH6TUQJuGDry8zH1TbGA/SKOfd7RJK6JsdetTMrIi+vNzGf4yNz8WEQzsd4C6Lzoi3iY/jFxIf4jSYQXVbzW0kMnWS7KkWWKlo2i8c68giIVu0/EYScE/WECRNs5eXlpQDgdDqRlJQ04Y477lClH/WleFJ48GYiqgJwBMAmuKqgfKKFMR5wUqd5/RYBgn1iTMGmpRkr20ZETphPRH0mvVQL9V+3Cl0XJW2Il4g6HB3Wq/Dp/l4HIRKd2dFzbQuSFMVq2sLw/WFQoCDS5dvv999/Pyo9Pd02ZsyYHivPDBZPkrSfg6vVTSUzZ8EVUbZNC2M84KbD1n4AABndSURBVKhO8/odBHKOj56zZWnmqoax1ivnEQn9Vv50Qu7eZCqNv/Troui4TJTfxv/MFNnZ927MLMbYZyTk26fHV7GJ9nn1HxgimCThMuG+9dZbMbfddlufqYGDwRNRO5j5LACBiARm/gKAXv7LozrN608oY63Tti3NXFV7xbDZ+QIJHrubvjAd3KkQZ1z6dVGQLxO1BKf5TvzJI9clR5vH2gpSJjjGWrczQfVUwkDGLAkXVXbt7u6mf/3rX9Zvf/vbA+6F1h+ePFM3E1EEgC0A/kxEp+HyV+vBUZ3m9QtGRk7cMTGmIFYSTF7XBTtLbYePCQ0ze/qeIDp7DJC4Dh/OfIeXHeyiMI9KM8uZETPltLBO0/6mTcLp7ulkuB9huUTUa9eutY4bN64zLS1NMw315dL6byKaDWAxXKGhjwNYB6AawCKtDOqHozrNqyvp4eO+XpKxsnRq3LUzJME0oFPnj817WkHosYqLKDp6FDUB9H285N2bTxTCHJNi59nnJJ5RQsUdAzA1aCAiNovCRWnKf/3rX2O+9a1vaRpf39dKXQVXNFkyXDXJ3mLmN7Q0xgOOwRV2F7RpgReSEjZq7/S4GwSzGDp1MOPsFY9ss5Gj19VdFHrX7WTsnhDLDV+dpXiv+khzuNsFVt9VbCppjCIFo7y5X0v6ckGpiUkk24Xl8Nra2oStW7dGvfHGG8e0nLfXlZqZX2bmmQDmwZW58z9EVEZETxHRGLUMIKKjRFRCRHuJ6Ou+rl319od2AIfVmttfSQhJP3hz2g925ycunWgWQy+rGeYN3XA0fy0dHtvXNYLYd9DTk3ghDswD2i4qSaGTbQtTMp3p4ZsY0MSF46+YxYu33pGRkUpzc/Pe2NhYTaPM+j0oY+ZjzPxTZp4E4C4ASwConRO6gJknMrMnK1LQnrLGWJIrbkpb/tWC5DuvCJXCPe6Q0RfrzHtKQIjr6xqhj5UaANJxbMQoVH45YCMEkpw50fNs85NkxWraPFRcYCEmsVOPeT3xU5uIaBER/Rku/3QlgKWaW9Y7e3ScWxOsprgjN6Q+uP2q5G+PCZesXm1z+6JWOFtyhtrm9HedKMj9Ps48jp/lgLl9UAZZxFj7jIS59mlxlSxR737wICHMLKpeqN8Ten2mJqKrAdwJ4EYAXwH4K4CHmFltQxnAZ0TEAF5l5tf6ub5Y5fl1I0IaVjM74ZbjVnP8DCJStfSuAsW53rTfAur//EEQnf1+uA9Dc/xMbN24HfnzB2sbD7Nk2xamQDza9qVU0ZpFQdp5Jcws6bJS93VQ9n8B/AXAk8ys5WndbGauc4ehrieicmbuq9ey1w3W/Y1QMbJ+VsLiylhLykwiStNijm1SxTaZlHn9XwkIpHh08PggfjNtB8+qZxJVqYIpZ0bOklPDO0wlwecCkwTBYZYEXQp09nVQtoCZf6exoMHMde4/TwP4J4A+t5+r3v7wDFwhqwGHRQg7My9p2aZFaY9Ex4UMn+vuJqo6bdRVVyHWeXxiToLsUZUTC2xht+CdqoFb1gOSEO52gTUooeJOVcfWkRCToMsqDXgWUaYZRBRORJHn/g7gGgAHPLi1r5Xc7zAJlpbZCbduXJz+g5Ck0Mx5RKTpivSRubgWhHBPrxcExePSRUvwt9kmtqkrbAAcLqXZ5yZNt0+IKWYB1WqP72vCzOLgzh8Ggd7F/BIB/NPty5MA/IWZ13lw32cA7tPSMDWQyNQ+Je7arzPCx/WaBqk2FWLdV+3U7dVhG5Hs8ftAAAvfw29bfoMV3hvnAUpS6GRbQopTqmjZJB7vmEiA6l1PGipVcSycJ37M7su+FhFiuixN+Nlnn03405/+FE9EyM7O7iwqKmK73W6VJMmZm5t7EAAcDod46NChEQ6Hw2IymWyjRo06bDKZvHKB6bpSM/NhZp7gfl3BzD/x8NZ/Qb/G9/0ikNg9JfaaTUsyVnZnRlwx312BVXMccHZslcq9Lj0kEHv14T4Hm6dGcYt2B5bfuMAcSlTgZYEJRHK4+WJ31pEjR0yvvfZa4t69e0urqqoOyrJM69atc4waNeqiXU9dXV1yZGRkW15e3oHIyMi2uro6r88vdBX1QFn19oen4Yf+aoLgmDBs/ualGU80j4qaNI+I+vQPq83nppKvmdhrUZOgeP1svxI/DQOzth+sFjHOPjMh3z4triKQXGDhFrGtp8aqsixTR0eH4HA40NXVJWRlZbWZTKaLggRaWlqi4+PjzwJAfHz82ZaWlsty2vsjIEXt5jO9DTgHgeRx0bO23pb5xKns6OlzBRI06ZHUFw3UWlUrNA6wATx7LeoxqMhORc3AA1K8gIdZcmwLU/IcY6K2cQDk1EdYTJcV88jKynI8+uij9VlZWXkJCQkTIiMj5SVLlly2RXc6nZLFYnEAgMVicTidTq8fkQNZ1J/qbQAAHhM19culmU8czx2WP0cgMVUXI8D8iXlPF2hgZyTk5fb7HKvwQqa7X5BPkLMiZ9sWJkfJ8SEbGbD1f4c+WEMvF3VDQ4P40UcfRR86dKikvr5+f2dnp/DKK6+o0cX1MgJZ1FsAaJZo3h9ZEXlfLc14ompS7MJZIkm69mzeLR3eZifngGPEiXhA3UQTcHr4BOzxbSaWJIQ7JsfOt89JOMUh/ucCCzWJHT35pz/44IOo9PR0W0pKitNisfAtt9zS/OWXX0Zcep0kSU6bzWYCAJvNZpIkyeuY+4AV9aq3P3QAWOvredPCs3cvyXj84LT466dJgkm1xJaB0gX72b3iUY/ynXuHe0zJ9IRH8ctJxIrPW/VwuCndNi9puj1v2G5/coFZQ009/iwyMzPtxcXFEW1tbYKiKNiwYUNkTk7OZbucqKio5oaGhlgAaGhoiLVarV4nwejt0hosbwF42BcTJYWO2D8j/kbFIoap6w8ZJJ+Y95SDMMBn6fMMuO93ODqtV2HdpvW4waPoNbVRksOm2BJDnVJ5yyaxxjMXWE8uKLWIDjP3KOqCgoKORYsWNeXl5eVIkoQrrriic/HixeHl5eVJsixLe/fuzUtOTq4bPnz4yUOHDo3cv39/nMlkso8aNcrrDyzS+gBTS15cdhMBOA5As2fZ+JDU0pnxi7tCpQi/EjMAHBMa9q437x90aak5+X+SiQbeO8sJ0fEA/lInk3RZqSSfYpMbzMVnK6jVMYsu2IX+7uZkJKaP0Hz6MLPUNioholKLsfft2xc3YcKETE+uDdjtNwCsevtDhquAg+oMMydW3Zj68M6C5LvH+aOgFSiODaYDKtRmVwYlaACQIJvuxhv61yaziPH2mQlz3C6wEl9P39vW29cEtKjd/FnNwSJNsceuG/7dbVen3DcywhQ9Xc2x1WSzqexLmZSR/V/ZN4Ioq3J6fS0+nhnKHZ6E+GoOD7Pk2AqSxztGR21joN4XcwpEyrAwk2bFBL0h4EW96u0P9wAY9ClouGQ9cXXKfVuuH/7d4VZz3Gwi8tufTQt11hwS6lXJuxYFWTXX0GP4hf9EfhGRPCJytm1hcoTJRN3u1F7NiAo1NUqi4PO+WT0R6Adl53gZrjRRrwkRI07PSri5LM6SOpOIAqK740fm3adAUCVlU1BR1BOwNy+eT+1ooMQZao05aCQhwi4RhAiT3WSTHd122eNEF2+IizCr3j5noPjtauQlawHv6k2bhdDGuYm3b7w57fuR8SFp84howG4dX3JQrNnRSfZBFSK8EEFwqprzuwovJA60npmWOAnmrhAx3BJh7jRdUjtssISaxPYws9Sl5piDIShE7fZZ/9aTa01kbp2VcMvGW9IfMyWHjZhPRAHTntUOZ9sOqVLVE+ZzbWzVIg01WaNR4ZPw0YHQLSDMHi6ZQ8NM7Wq1mY3xo1UaCJ7tNwC8CuA/0IvPVSSpc0rsNV9lRoyf4Ks0SLVZb9q/hwlz1RxTVHmlBoDH8V85j/Lv2+DOlfc3rt1dSQAui+YaKHXzJ3gUIPLcc88lvPnmm/HMjHvvvbdBi46XQJCs1MD5zK0/Xfp1AaJtcuxVm5ZmrOzIisydTz10cgwETlFz+UmhabBBJpchqrxSA0A0muNnY4t2ER5+huDBIdyuXbtC3nzzzfji4uKysrKyg+vWrYsuKSkZcNBPn/ZoMaiO/ASAA3A1kMsdNnfL0swnGkdHTZlHJFzWGC5QYLCyzrxXxiD9yT0hXNCbWk2+i99MF1j2+4wqX1FSUhI6efLk9sjISMVkMmH27Nltb7/9tiZtgINK1Kve/vAogf6QY52x7bbMVSfGRc/MF0gI+EqVX0mHtjpIHmR8d8+IgjaitsAeegv+7jcx2XozceLErp07d0bW19eLbW1twvr16601NTWaHM4G0zM1AGBpxhM/FgXpEAYRz+xPdMLWUCIen6DV+Jf2plaTW7F21od8a6WdLLonvujN5MmTu1esWFFfUFAwJiwsTBk3blynJGkjv6BaqQEg42cLagH8Rm871OJjc3EVSP06XecQRKdmASMCWHgQr1xWCGCosnLlyjOlpaVlX3/9dUVMTIw8evRoTXLRg07Ubn4C4LJE9UDjsHCquFnonKXlHKKGogaAWdg61crNQ+bQrC9OnDghAUBVVZX5o48+iv7ud7+rSax40G2/ASC1KP9M7eotT8MVaRaQyFBsG00HNamMcSGioK2oAeAJFEU8wy8o8JPQ20+nDOxpQAScFrvSnRBuOWkNvbxaaH/cfPPNI5ubmyVJkvill146Hh8fr8mjT1CK2s0aAPcDGHRqoh5sNB3coRBrnqMs9tJwXk1GoWpsOo5tPY7Mfvt6+TMyIAlhknMgggaA3bt3V6htU0/4xSenFqQW5csAHoEflxLujSZqP3pEOO2T+GlB9E1nmCdQNBLMfhNKORCIoAy3mGv0tqM/glbUAJBalL8DwB/0tsNbPjIXN4J8c3rvq8SieDQkT8LugO6DFmeSToaIgl1vO/ojqEXt5t8BnNHbCE/ZJx77spsck301nyD6Lvfi+3h5ErGiW7HIwWARqTPZYvJJbvZgCXpRpxblnwXwkN52eIINjpZd0qHRvpxT8GEKcBg6o67Bx35RSMEbiMDpIZYjPRXo90eCXtQAkFqU/08EwDb8U/Pe/SD4NJxVEPrvTa0md+HNWRI7jvpyzsESbzadCBMFn9U3HyxDQtRuVgA4rLcRvVEnNB48Ta2qJ2z0hyjIPn0PSJBN9+CPAbGNBYBQUWhPMkun9LbDG4LZpXURqUX57bWrt9wDVxMA1RMjBoMClj8z7ZNAvv+QJR+LGgCuxroZf+O7SjopPNfXcwPA4ue/8ObyCAB9Fp48WnRjv8E1t99+e+bnn39ujY2NdVZVVR0EgFOnTom33nrriBMnTliGDx9ue++99w6r4bseSis1UovytwP4T73tuJTtUsVWJylj9Zjbm97UavIYXgyMB1SVeOCBB868//77F3W4fOaZZ5Lnz5/fduzYsQPz589ve/rpp1XpwTakRO3mOQDv6W3EOdrQdbJMPKFbCWJBkHURdR72jU/get+27NGR66+/vj0+Pv4iV8O6deuiH3744bMA8PDDD5/95JNPVMn1H3KiTi3KZwDfBlCqty0A8LF5zzGQelU4vIVI0e0R7Ek8nwxm30S/+CFnz56VMjIyHACQkZHhaGxsVOV3MeREDQCpRfltAG4B4HWfIjWpFE7uahO6dK28OdCOl2owHCcyslHqt/XMApUhKWoASC3KrwJwBwBdajU7IXdtMZXpXsCByPuG82qyAj8fD+aAz6gbCLGxsc5jx46ZAODYsWOmmJgYVSKBhqyoASC1KP9TAI/pMffnppKvmFiXftYXQuR9w3k1iUJrbD427tHTBr249tprm1999dVYAHj11Vdjr7vuOlV2jkPGpdUbqUX5v6ldvSUZwFO+mvMMtVXXCGc1zZP2nIG3sVWLB/DqjG08t04hMcUX8733fxdc9rW0UHN1jEnS7HFs0aJFWTt27IhsamqSEhMT81avXl337LPPnrz11ltHZmRkxKWkpNjfffddVco/DXlRA0BqUf7Ttau3xMGV1aUpDOZPzMXtIOi6Qp6DSH9Rm+EIWYK/HV6LO30i6ktJspiOayloAPjggw+O9PT17du3q94lc0hvvy/hUfRQYlht9ohHttnIqVnNsQHgF7XcFuOdWWbu9km+8YXEm6W6RIupwdfzaklQi5qIooloLRGVE1EZEc3s7Vq3q+t+AH/Vyp4u2BuLpSM5Wo0/QPxC1AJYeBhr2n05Z7xZqksJMQddGeOgFjVc5YzWMXM2gAkAyvq62F1Y4W4Av9PCmHXmvaUgxGox9sBgkI/ytj1hBr6cEs1NX6s9LgNgvrhWRrxZOhEoglYUhQB4XHYqaEVNRFEA5gJ4HQCY2c7M/T43pRblK6lF+Q8BeFFNe2qEM/vPUpvPEzb6gkhRtVGcGjyBF6xgVrVu2lEn4GhtPi/sRIupJiXEHBBJJYqiUENDgxWAxymrwXxQNgJAA4D/IaIJAHYDWMHMHZ7cnFqU/2Tt6i0tUCFWXIHi+JepJBQEv4p3drex9ZuVGgBGonp0Bo5uPYYs1eqZ/aJDwRP1Z5B15gyiCGdPEZRTQFxf97S3t0d1dXVFAEBoaGh7RESEXqWOFQAHnE7n9zy9gS7dlgQLRDQVwA4As5l5JxG9DKCVmb1yXdWu3vJ9uLbxA/4A3CyVbqqUTmpeRNBbTObOMzNmvNPnm1sPziDu5Ar81gqiMBWHbQawtH7BxA39XUhE4+E6W5kGwA5gHYBHmLmqzxv9hKDdfgOoBVDLzDvd/14LwOsyQalF+a8AuA5A00CMaKXO2krx5JUDuVdrRBUbzqtJHM4kT8EuNeuZVQOY6Ymg3eQA2MHMnezqtb0JwK0q2qMpQStqZq4HUENE51IaF2KASRypRfmfw/Wp3edBW098ZC6uA0HNFUc1BMHpt0X0HsGvphArariatgKYUb9gYrkX9xwAMJeIYsm1W7gBQJoKtviEoBW1m8cA/JmI9sNV//v5gQ6UWpR/CMAMAB95ek+ZWLuzg2zTBjqn1mjRxlYtQtEVeT0+8PpD9BJeAXBV/YKJXhWeZOYyAD8FsB6urfc+AL6r0DhIgvaZWitqV28RAPwIQCH6eM52wNn+pmVTKxN0iZLyBGv0yYN5ef/SpJumGsgQnA/gLzVOMmV5eWsLgO/WL5j4jhp2ENHzcD3KvaLGeFoT7Cu16rhdXj8BMAeuZ7UeWW/av9ufBQ0AoiD79eojQpHuxR+8rQ/2FYBJgxU0ESW4/0wHsATAW4MZz5cYoh4gqUX5OwFMAvDGpd87TS0VdUKTX/mke0LQsI2tWizEZzPCuX2/B5cqAH4OYE79gok9xll7yTtEVArgAwCPMvOADkr1wBD1IEgtym9LLcr/DoBlcPnE3Qkbexwg/48B0KrhvNr8G37e3/v0AIBZ9Qsm/p/6BRNVOSdg5nxmHsfME5j5czXG9BWGqFUgtSj/b3C5Qd7YJVVvcZA8Xm+bPEEUHX6/UgPAeJSMT+ST23v4lg3A0wAm1y+YuLOH7w9JDFGrRGpR/tnUovzvHBCPPwXAk+2i7mjdm1pNnsTzKWC+0AW3Fa5n5+fUWp2DBUPUKvP0s89shivI5QcYYMCKrxACSNQpqMvIwcHtAI4BuLN+wcT8+gUTB+vyCkoMUWtAYWGhXFhYuAbAaACvwosMG1/ii97UKtL8CH71HoDs+gUTNUuPDQYMP7UPKCwsHAXgcbjytf0mumz0mC83JSVV+11M+iW0wxVEUrSwoNqvdz7+giFqH1JYWBgDV8mkHwBQpRvDYBibvWVjQsLR+Xrb0QsNAH4FYI0hZu8wRK0DhYWFZriKMTwBQLeT8nHjvtgUG1frbyv1Ebhy2f+wsKC6S29jAhFD1DpTWFh4LYBVAK729dzjc9dvGjas3h9ELQP4GK6CFh8uLKgOCFebv2KI2k8oLCzMA/BvcIUkqtJTqT/yJqzbbLU2zPXFXL1wCC4hv7GwoDogSgsFAoao/YzCwkITgAUAlsLVGihBq7kmTfpoa0Rko2oVRjykGq4Ghf9YWFC9zcdzDwkMUfsxhYWFIlyJIzcBuBaAqv2cp0x5/8uw8BatmwowgD0A3gXw7sKC6hKN5xvyGKIOIAoLC1MAXON+FQBIHMx4U6/8547Q0Ha1G/QpcMVibwXwBYBNCwuqg6qutr9jiDqAKSwsjAUwzv3KueBPj3p0TZv+zi6LpXMwpZY64KomcwDAQbjCY3cuLKjWq0ifAQxRByWFhYVRALLxjeDHAogBEAkgyv2KnD7j7wfM5u5L67bJALoAdLr/bARwAkDdJX9WADiysKDaeAP5GYaohzCfbxgpATC5XwDQtbCg2kiOCHAMUfsB7uKIb1/wpREAnmbml3QyySCAMUTtZxCRCNf2djozH9PbHrUgopUAvgfXaXgJgPuZuVtfq4ITI0vL/1gIoDrIBD0crsCaqcw8HoAI4A59rQpeDFH7H3cggIrceYEEIJSIJLgy1ep0tidoMUTtRxCRGcDNAP6uty1qwswn4CoKeBzASQAtzPyZvlYFL4ao/YvrARQzs7dlcf0aIhoGYDGALAApAMKJ6B59rQpeDFH7F3ciOLfeVwE4wswNzOwA8A8AWoenDlkMUfsJ7p5NV8P1hg82jgOYQURhRERwHQYa9cU0wu9rUw8VmLkTQKzedmiBu5XwWgDFcPWk2gPgNX2tCl4MP7WBQZBhbL8NDIIMQ9QGBkGGIWoDgyDDELWBQZBhiNrAIMgwRG1gEGQYojYwCDIMURsYBBmGqA0MggxD1AYGQYYhagODIMMQtYFBkGGI2sAgyDBEbWAQZBiiNjAIMgxRGxgEGYaoDQyCDEPUBgZBxv8HxMET3eFvn5QAAAAASUVORK5CYII=\n", "text/plain": [ "
" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "df.plot.pie(y='Values', x='t')" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "### Scatter Chart\n", "\n", "Like a line chart, but not connected." ] }, { "cell_type": "code", "execution_count": 26, "metadata": {}, "outputs": [ { "data": { "text/plain": [ "" ] }, "execution_count": 26, "metadata": {}, "output_type": "execute_result" }, { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAY4AAAEGCAYAAABy53LJAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4xLjEsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy8QZhcZAAAYjUlEQVR4nO3df5BdZ33f8fdn0SILZGJ5Jbu2ZMcUHAPxyArZeKAeIIQ4dR2wASWpaUqc1BO3DUlJ04Ignaad5sdgJykhQ0sjbGOTGgODQu0GY3BdBmcIkKyJLAQG5PAjXuxaQpaJBbZYsd/+cc/i9bK72mPtvWd/vF8zO/ee5z7n7PfaGn30PM/5kapCkqSFGuq6AEnS8mJwSJJaMTgkSa0YHJKkVgwOSVIra7ouYBA2btxYZ511VtdlSNKyctddd32jqjbNbF8VwXHWWWcxNjbWdRmStKwk+dps7U5VSZJaMTgkSa0YHJKkVgwOSVIrBockqRWDY4k6ePgId9/3MAcPH+m6FEl6glVxOu5yc/Pur7Nj1x6Gh4aYmJzk6u1buWTb5q7LkiTAEceSc/DwEXbs2sNjE5M8cuQoj01M8sZdexx5SFoyDI4lZvzQowwPPfF/y/DQEOOHHu2oopXPaUGpHaeqlpgtG9YxMTn5hLaJyUm2bFjXUUUrm9OCUnt9G3EkuS7J/iR7p7X9bJLPJZlMMjqj/5uT3Jvki0n+8RzHfGaSTyfZl+R9SZ7ar/q7MrJ+LVdv38oJw0OcuHYNJwwPcfX2rYysX9t1aSuO04LSk9PPEcf1wNuBd09r2wu8GviT6R2TPA+4DPhh4HTg/yT5oar67oxjXgW8tarem+R/AFcA7+hP+d25ZNtmLnj2RsYPPcqWDesMjT6ZmhZ8jMdHeFPTgv43l+bWtxFHVd0JPDSj7Z6q+uIs3S8F3ltVR6rqK8C9wPnTOyQJ8BPAB5qmG4BXLnrhS8TI+rWcd8ZJ/gXWR04LSk/OUlkc3wzcN217vGmbbgR4uKqOztPne5JcmWQsydiBAwcWtVitDE4LSk/OUlkczyxt9ST6PP5B1U5gJ8Do6Oic/bS6OS0otbdUgmMcOGPa9hbg/hl9vgGclGRNM+qYrY/U2sj6tQaG1MJSmaq6BbgsydokzwTOBv5qeoeqKuBjwM80TZcDNw+0SklSX0/HvQn4JHBOkvEkVyR5VZJx4IXAh5J8BKCqPge8H/g8cBvwuqkzqpLcmuT05rA7gN9Ici+9NY9r+1W/JGl26f1DfmUbHR0tHx0rSe0kuauqRme2L5WpKknSMmFwSJJaMTgkSa0YHJKkVgwOSVIrBockqRWDQ5LUisEhSWrF4JAktWJwSJJaMTgkSa0YHJKkVgwOSVIrBockqRWDQ5LUisEhSWrF4JAktdLPR8del2R/kr3T2k5OcnuSfc3rhqb9DUl2Nz97k3w3ycmzHPP6JF+Z1ndbv+qXJM2unyOO64GLZrS9Cbijqs4G7mi2qarfr6ptVbUNeDPw8ap6aI7jvmGqb1Xt7lPtkqQ59C04qupOYOZf/pcCNzTvbwBeOcuurwFu6lddkqTjM+g1jlOr6gGA5vWU6R8meRq9UcqueY7xu0n2JHlrkrVzdUpyZZKxJGMHDhxYjNolSSy9xfFXAJ+YZ5rqzcBzgB8DTgZ2zHWgqtpZVaNVNbpp06bFr1SSVqlBB8eDSU4DaF73z/j8MuaZpqqqB6rnCPAu4Py+VSpJmtWgg+MW4PLm/eXAzVMfJPkB4CXT22aaFjqhtz6yd66+kqT+6OfpuDcBnwTOSTKe5ArgLcCFSfYBFzbbU14FfLSqvjXjOLcmOb3ZvDHJZ4HPAhuB3+lX/ZKk2aWquq6h70ZHR2tsbKzrMjSPg4ePMH7oUbZsWMfI+jnPeZA0QEnuqqrRme1ruihGmu7m3V9nx649DA8NMTE5ydXbt3LJts1dlyVpDkvtrCqtMgcPH2HHrj08NjHJI0eO8tjEJG/ctYeDh490XZqkORgc6tT4oUcZHnriH8PhoSHGDz3aUUWSjsXgUKe2bFjHxOTkE9omJifZsmFdRxVJOhaDQ50aWb+Wq7dv5YThIU5cu4YThoe4evtWF8ilJczFcXXukm2bueDZGz2rSlomDA4tCSPr1xoY0jLhVJUkqRWDQ5LUisEhSWrF4JAktWJwSJJaMTgkSa0YHJKkVgwOPcHBw0e4+76HvcmgpDl5AaC+x9ubS1qIfj4B8Lok+5PsndZ2cpLbk+xrXjc07T+e5JtJdjc/vzXHMZ+Z5NPN/u9L8tR+1b/aeHtzSQvVz6mq64GLZrS9Cbijqs4G7mi2p/xFVW1rfv7LHMe8Cnhrs/8h4IpFrnnV8vbmkhaqb8FRVXcCD81ovhS4oXl/A/DKhR4vSYCfAD7wZPbX/Ly9uaSFGvTi+KlV9QBA83rKtM9emOTuJB9O8sOz7DsCPFxVR5vtcWDOCfgkVyYZSzJ24MCBxap/xfL25pIWaqksjn8G+MGqOpzkYuB/AWfP6JNZ9qu5DlhVO4GdAKOjo3P20+O8vbmkhRj0iOPBJKcBNK/7Aarq76vqcPP+VmA4ycYZ+34DOCnJVNhtAe4fTNmrx8j6tZx3xkmGhqQ5DTo4bgEub95fDtwMkOQfNGsYJDm/qevg9B2rqoCPAT8zc39J0uD083Tcm4BPAuckGU9yBfAW4MIk+4ALm23ohcHeJHcDfwxc1gQFSW5NcnrTbwfwG0nupbfmcW2/6pckzS7N388r2ujoaI2NjXVdhiQtK0nuqqrRme3eckSS1IrBIUlqxeCQJLVicEiSWjE4JEmtGBySpFYMDklSKwaHJKkVg0OS1IrBIUlqxeCQJLVicEiSWjE4JEmtGBySpFYMDklSKwaHJKkVg0OS1Eo/Hx17XZL9SfZOazs5ye1J9jWvG5r2n0+yp/n5yyTnzXHM65N8Jcnu5mdbv+qXJM2unyOO64GLZrS9Cbijqs4G7mi2Ab4CvKSqtgK/Deyc57hvqKptzc/uRa5ZknQMfQuOqroTeGhG86XADc37G4BXNn3/sqoONe2fArb0qy5J0vEZ9BrHqVX1AEDzesosfa4APjzPMX63mdJ6a5K1c3VKcmWSsSRjBw4cOL6qJUnfs6QWx5O8lF5w7Jijy5uB5wA/Bpw8Tz+qamdVjVbV6KZNmxa9VklarQYdHA8mOQ2ged0/9UGSrcA1wKVVdXC2navqgeo5ArwLOH8ANUuSpmkVHEmGkjzjOH7fLcDlzfvLgZub454J/Bnw2qr60jy/fyp0Qm99ZO9cfSVJ/XHM4EjyniTPSPJ04PPAF5O8YQH73QR8EjgnyXiSK4C3ABcm2Qdc2GwD/BYwAvz35jTbsWnHuTXJ6c3mjUk+C3wW2Aj8zoK/qSRpUaSq5u+Q7K6qbUl+HvhReusKdzWnzi4Lo6OjNTY2duyOkqTvSXJXVY3ObF/IVNVwkmF6U0M3V9UEMH/aSJJWrIUEx58AXwWeDtyZ5AeBv+9nUZKkpWvNsTpU1R8Dfzyt6WvNabOSpFVoIYvjpya5NsmHm+3n8fiZUZKkVWYhU1XXAx8Bps5s+hLw6/0qSJK0tC0kODZW1fuBSYCqOgp8t69VSZKWrIUEx7eSjNCcSZXkBcA3+1qVJGnJOubiOPAb9K74flaSTwCbgJ/pa1WSpCVrIWdVfSbJS4BzgABfbK7lkCStQscMjiS/MKPp+Umoqnf3qSZJ0hK2kKmqH5v2/gTgZcBnAINDklahhUxV/dr07SQ/APxp3yqSJC1pT+Z5HN8Gzl7sQiRJy8NC1jj+N4/f1HAIeB7w/n4WJUlauhayxvEH094fBb5WVeN9qkeStMQtZI3j44MoZCk6ePgI44ceZcuGdYysX9t1OZK0JMwZHEkeYfbnbgSoqjrmI2STXAe8HNhfVec2bScD7wPOone79p+rqkPN42DfBlxMbx3lF6vqM7Mc80fp3T9rHXAr8Po61tOonoSbd3+dHbv2MDw0xMTkJFdv38ol2zYv9q+RpGVnzsXxqjqxqp4xy8+JCwmNxvXARTPa3gTcUVVnA3c02wD/hN6i+9nAlcA75jjmO5rPp/rOPP5xO3j4CDt27eGxiUkeOXKUxyYmeeOuPRw8fGSxf5UkLTsLPqsqySlJzpz6Wcg+VXUn8NCM5kuBG5r3N9B7suBU+7ur51PASUlOm1HDacAzquqTzSjj3dP2XzTjhx5leOiJ/2mGh4YYP/ToYv8qSVp2FvI8jkuS7AO+Anyc3vTSh4/jd55aVQ8ANK+nNO2bgfum9Rtv2qbb3LTP12eq7iuTjCUZO3DgQKsCt2xYx8Tk5BPaJiYn2bJhXavjSNJKtJARx28DLwC+VFXPpHfl+Cf6UEtmaZu5drGQPr3Gqp1VNVpVo5s2bWpVyMj6tVy9fSsnDA9x4to1nDA8xNXbt7pALkks7HTciao6mGQoyVBVfSzJVcfxOx9MclpVPdBMPe1v2seBM6b12wLcP2Pf8aZ9vj6L4pJtm7ng2Rs9q0qSZljIiOPhJOuBvwBuTPI2etdzPFm38PijZy8Hbp7W/gvpeQHwzakprSnN9iNJXtCchfUL0/ZfdCPr13LeGScZGpI0zZzBkeTtSS6gt2j9bXqPi70N+FvgFQs5eJKbgE8C5yQZT3IF8Bbgwmbd5MJmG3qn1n4ZuBd4J/Ar046ze9ph/zVwTdPvbzm+9RZJUkvzTVXto3fV+Gn0rru4qapumKf/96mq18zx0ctm6VvA6+Y4zrZp78eAc9vUIUlaPPNdx/G2qnoh8BJ6p9S+K8k9Sf5jkh8aWIWSpCXlmGscVfW1qrqqqn4E+GfAq4F7+l6ZJGlJWsh1HMNJXpHkRnrrCV8Ctve9MknSkjTfvaouBF4D/DTwV8B7gSur6lsDqk2StATNtzj+m8B7gH9fVTNvGyJJWqXmDI6qeukgC5EkLQ9P5tGxkhbBwcNHuPu+h73rspadhdxyRNIi83kvWs4ccUgD5vNetNwZHNKA+bwXLXcGhzRgPu9Fy53BIQ2Yz3vRcufiuNQBn/ei5czgkDoysn6tgaFlyakqSVIrBockqRWDQ5LUSidrHEleD/wyEOCdVfVHSd4HnNN0OQl4ePqT/6bt+1XgEeC7wNGqGh1M1ZIk6CA4kpxLLzTOB74D3JbkQ1X1T6f1+UPgm/Mc5qVV9Y3+VipJmk0XU1XPBT5VVd+uqqPAx4FXTX2YJMDPATd1UJsk6Ri6CI69wIuTjCR5GnAxcMa0z18EPFhV++bYv4CPJrkryZVz/ZIkVyYZSzJ24MCBRStekla7gU9VVdU9Sa4CbgcOA3cDR6d1eQ3zjzYuqKr7k5wC3J7kC1V15yy/ZyewE2B0dLQW7QtI0irXyVlVVXVtVT2/ql4MPATsA0iyBng18L559r2/ed0PfJDeWokkaUA6CY5mtECSM+kFxdQI4yeBL1TV+Bz7PT3JiVPvgZ+iN/UlSRqQrm45sivJCDABvK6qDjXtlzFjmirJ6cA1VXUxcCrwwd76OWuA91TVbYMrW5LUSXBU1YvmaP/FWdrup7eATlV9GTivr8VJkublleOSpFYMDklSKwaHJKkVg0OS1IrBIUlqxeCQJLVicEiSWjE4JEmtGBySpFYMDklSKwaHJKkVg0OS1IrBIUlqxeCQJLVicEiSWjE4JEmtdPXo2Ncn2Zvkc0l+vWn7z0m+nmR383PxHPtelOSLSe5N8qbBVi5JGvgTAJOcC/wycD7wHeC2JB9qPn5rVf3BPPs+BfhvwIXAOPDXSW6pqs/3uWxJUqOLEcdzgU9V1ber6ijwceBVC9z3fODeqvpyVX0HeC9waZ/qlCTNoovg2Au8OMlIkqfRe574Gc1nv5pkT5LrkmyYZd/NwH3Ttsebtu+T5MokY0nGDhw4sJj1S9KqNvDgqKp7gKuA24HbgLuBo8A7gGcB24AHgD+cZffMdsg5fs/OqhqtqtFNmzYtRumSJDpaHK+qa6vq+VX1YuAhYF9VPVhV362qSeCd9KalZhrn8dEJwBbg/v5XLEma0tVZVac0r2cCrwZuSnLatC6vojelNdNfA2cneWaSpwKXAbf0u15J0uMGflZVY1eSEWACeF1VHUryp0m20Zt6+irwLwGSnA5cU1UXV9XRJL8KfAR4CnBdVX2um68gSatTJ8FRVS+ape21c/S9n94C+tT2rcCt/atOWvkOHj7C+KFH2bJhHSPr13ZdjpaZrkYckjpy8+6vs2PXHoaHhpiYnOTq7Vu5ZNusJydKs/KWI9IqcvDwEXbs2sNjE5M8cuQoj01M8sZdezh4+EjXpa1YBw8f4e77Hl5R/40dcUiryPihRxkeGuIxJr/XNjw0xPihR52y6oOVOrpzxCGtIls2rGNicvIJbROTk2zZsK6jilaulTy6MzikVWRk/Vqu3r6VE4aHOHHtGk4YHuLq7VsdbfTB1OhuuqnR3XLnVJW0ylyybTMXPHujZ1X12Uoe3TnikFahkfVrOe+MkwyNPlrJoztHHJLUJyt1dGdwSFIfjaxfu2ICY4pTVZKkVgwOSSveSrwIr0tOVUla0VbqRXhdcsQhacVayRfhdcngkLRireSL8LpkcEhasVbyRXhdMjgkrVgr+SK8LnWyOJ7k9cAvAwHeWVV/lOT3gVcA3wH+Fvilqnp4ln2/CjwCfBc4WlWjAytc0rKzUi/C69LARxxJzqUXGucD5wEvT3I2cDtwblVtBb4EvHmew7y0qrYZGpIWwlusLK4upqqeC3yqqr5dVUeBjwOvqqqPNtsAnwK2dFCbJOkYugiOvcCLk4wkeRq954mfMaPPvwA+PMf+BXw0yV1JruxjnZKkWQx8jaOq7klyFb2pqcPA3cDUSIMk/6HZvnGOQ1xQVfcnOQW4PckXqurOmZ2aULkS4Mwzz1zkbyFJS9vBw0f6tq7TyeJ4VV0LXAuQ5PeA8eb95cDLgZdVVc2x7/3N6/4kH6S3VvJ9wVFVO4GdAKOjo7MeS5JWon5fLd/J6bjNaIEkZwKvBm5KchGwA7ikqr49x35PT3Li1Hvgp+hNfUmSGMzV8l3dq2pXkhFgAnhdVR1K8nZgLb3pJ+gtoP+rJKcD11TVxcCpwAebz9cA76mq27r5CpK09ExdLf8Yj1/4OHW1/GJNWXU1VfWiWdqePUff++ktoFNVX6Z3Cq8kaRaDuFreK8claQUZxNXy3lZdklaYfl8tb3BI0grUz0fWOlUlSWrF4JAktWJwSJJaMTgkDczBw0e4+76HfXTrMufiuKSB6PdtMDQ4jjgk9d0gboOhwTE4JPXd1G0wppu6DYaWH4NDUt8N4jYYGhyDQ1LfDeI2GBocF8clDUS/b4OhwTE4JA1MP2+DocFxqkqS1IrBIUlqxeCQJLVicEiSWjE4JEmtpKq6rqHvkhwAvtZ1HU/CRuAbXRcxQKvt+4LfebVYrt/5B6tq08zGVREcy1WSsaoa7bqOQVlt3xf8zqvFSvvOTlVJkloxOCRJrRgcS9vOrgsYsNX2fcHvvFqsqO/sGockqRVHHJKkVgwOSVIrBscSk+SMJB9Lck+SzyV5fdc1DUqSpyT5myR/3nUtg5DkpCQfSPKF5v/3C7uuqd+S/Nvmz/XeJDclOaHrmhZbkuuS7E+yd1rbyUluT7Kved3QZY3Hy+BYeo4C/66qngu8AHhdkud1XNOgvB64p+siBuhtwG1V9RzgPFb4d0+yGfg3wGhVnQs8Bbis26r64nrgohltbwLuqKqzgTua7WXL4FhiquqBqvpM8/4Ren+ZbO62qv5LsgX4aeCarmsZhCTPAF4MXAtQVd+pqoe7rWog1gDrkqwBngbc33E9i66q7gQemtF8KXBD8/4G4JUDLWqRGRxLWJKzgB8BPt1tJQPxR8AbgcljdVwh/iFwAHhXMz13TZKnd11UP1XV14E/AP4OeAD4ZlV9tNuqBubUqnoAev84BE7puJ7jYnAsUUnWA7uAX6+qv++6nn5K8nJgf1Xd1XUtA7QGeD7wjqr6EeBbLPPpi2Np5vUvBZ4JnA48Pck/77YqPRkGxxKUZJheaNxYVX/WdT0DcAFwSZKvAu8FfiLJ/+y2pL4bB8aramo0+QF6QbKS/STwlao6UFUTwJ8B/6jjmgblwSSnATSv+zuu57gYHEtMktCb976nqv5r1/UMQlW9uaq2VNVZ9BZL/29Vreh/iVbV/wPuS3JO0/Qy4PMdljQIfwe8IMnTmj/nL2OFnxAwzS3A5c37y4GbO6zluK3pugB9nwuA1wKfTbK7afvNqrq1w5rUH78G3JjkqcCXgV/quJ6+qqpPJ/kA8Bl6Zw/+DSvsVhwASW4CfhzYmGQc+E/AW4D3J7mCXoD+bHcVHj9vOSJJasWpKklSKwaHJKkVg0OS1IrBIUlqxeCQJLVicEgdae6O+ytd1yG1ZXBI3TkJMDi07BgcUnfeAjwrye4kv991MdJCeQGg1JHm7sd/3jybQlo2HHFIkloxOCRJrRgcUnceAU7sugipLYND6khVHQQ+kWSvi+NaTlwclyS14ohDktSKwSFJasXgkCS1YnBIkloxOCRJrRgckqRWDA5JUiv/H4AUTNJA0hAsAAAAAElFTkSuQmCC\n", "text/plain": [ "
" ] }, "metadata": { "needs_background": "light" }, "output_type": "display_data" } ], "source": [ "df.plot.scatter(y='Values', x='t')" ] } ], "metadata": { "kernelspec": { "display_name": "Python 3", "language": "python", "name": "python3" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 3 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", "version": "3.6.0" } }, "nbformat": 4, "nbformat_minor": 4 }